
Introduction to HDF5 and F5

Bachelor Thesis

Marcel Ritter, 9817001

March 2007

Supervisor: Dr. Frank Lenzen

Institute of Computer Science

Leopold-Franzens-Universität Innsbruck

1

Abstract

The thesis describes the scientific data file format F5. Its foundation, the
Hierarchical Data Format HDF5, is described and the concepts of F5 are
presented. Examples for working with F5 in practice are presented and the
compilation and installation processes needed to run them are explained. Finally,
data structures and functions for operating on basic tensor field types are
implemented in C and C++ and a medical data set is read using F5. The text also
should serve as an introductory guide to HDF5 and F5 for a new user.

2

Table Of Contents
Introduction..4

Hierarchical Data Format (HDF)...7

Key Features of the HDF5 library...8
Concept of Data Organisation...11
The HDF5 Library...15
Working with HDF5... 15

Installation HDF5 for cygwin and Linux... 16
Install hdf5 for MS Visual Studio®... 17
Using the Binary Tools...20

The command H5ls..20
H5dump... 21

Writing, Reading and Debugging Data using HDF5.. 23
Storing a simple data-set.. 23
Reading a simple dataset.. 25
Creating Groups, Attributes, Comments and Links... 27
Reading Groups, Comments, Attributes and Links..31
Maya Plug-In HDF5_Read_Fluid.. 33

F5... 34

Fiber.. 35
Fiber Bundles.. 35
F5 File Organisation..38

Bundle.. 38
Slice..39
Grid.. 40
Topology.. 40
Representation..42
Field ...44

The F5 Library.. 45
Installation of F5 for Linux.. 46
F5ls...46
Q5ls.. 47
Important Data Types and Functions... 48

Basic Data Types:.. 48
ChartDomain_IDs..49
F5Path..50
Writing F5... 50
Reading F5...51

Example F5 file...56
Basic Tensor Type Data Structures in C and C++...58

C..58
C++... 61

Conclusion... 64

3

Introduction

Carrying out research has become nearly impossible without intensive use of
computers, their computational power today is of great help to many different
fields. Two very important fields are data processing and data visualisation,
which have many applications, for example in engineering, the medical and life
sciences, physics, astronomy and meteorology.

Theoretical models of processes are created while studying the world around
us. These mathematical models often become that complicated that analytical
investigations are impossible, leaving only numerical methods to study the
equations. This limits the kind of data one can work on to numerical data.

Also measuring physical properties with digital instruments and recording
the data digitally results in numerical data.

Artificially created or measured data can be processed further, for example
with algorithms that, among many other operations, filter, convert, segment,
transform, compress or resample the data to highlight certain properties, like
using a magnifying glass.

Visualisation of the data then is the subsequent result as it serves as a very
powerful method to understand or read the data, particularly when huge
numerical data sets have to be analysed. An image created from this data is
another representation of this data, but with the great advantage that the data
immediately becomes 'readable' for us at a glance. Just imagine the difference
between a x-ray film and a spelled out list of grey value levels. Visualisation is
also indispensable for communicating the findings or for presenting complicated
contexts to an audience.

The software applications that are used by the scientific community share
one common need: They need to access the data they should operate on. At
present time the applied software often uses non standardised data formats for the
external representation. This use of proprietary data formats greatly limits the
possibility to interchange data between packages and, therefore, also between
research groups or projects. Groups wishing to work together first have to
overcome the problem of differing data formats to be able to work on the same
data. This is time consuming and sometimes even nearly impossible if the format
is not documented, as it is the case for many proprietary formats.

4

The data has to be represented internally in an application and externally on
a physical storage device. Achieving optimal computational performance is the
main goal for the internal memory representation. Whereas the external
representation should allow easy interchangeability and be as self-explanatory as
possible but also allow compact storage and fast read and write access.

From a user's or researcher's point of view the lack of a standard leads to
numerous duplication and huge time investments in the case data has to be
shared. As working together more and more becomes important, the wish and
need for a standardised way to exchange data between software packages and
groups becomes very important.

Attempts have been made in the recent time to overcome this problem and to
offer a standardised way of storing and accessing scientific data. This thesis
presents the Hierarchical Data Format (HDF) library developed by the National
Center for Supercomputing Applications [HDF06].

“HDF5 is a general purpose library and file format for storing scientific
data.” [An Introduction to HDF5,

http://www.hdfgroup.org/HDF5/doc/H5.intro.html, 21.03.2007]

Scientific data, as opposed to information data, is data that carries intrinsic
geometric information, is defined in an n-dimensional base space and is given on
a specified grid structure. Among the most basic data fields for example, is a
scalar field that gives one numeric value for every three dimensional space point,
like a temperature field. It could be given on a uniform grid, which means the
space points are equally spaced in every direction. Vector fields are another
example. They associate a vector to every space point. A velocity field describing
flowing fluids in three spacial dimensions is a vector field. A more complex
structure is the tensor field, which assigns a multilinear mapping to every point in
a grid.

To be able to create the technical implementation one needs further
information about properties like the needed numerical resolution, data hierarchy,
as well as precise knowledge of the hardware platforms, because numbers are
represented differently on different systems. Being able to store meta data is of
interest, too. These topics have be addressed by creators of general data formats.

As a user of a format one should not need to know of the technical low level
implementation. Ideally, the user only operates on the higher level structures

5

without having to invest time to address low level implementation details. In the
scenario where, for example, data sets should be exchanged it is sufficient if both
parties make use of one general, widely available format to store and access their
data. This eases and speeds up the application development, helps in sharing data
between the groups and leaves the user with more time to concentrate on the
scientific work.

To provide such a framework is exactly the purpose of the HDF5 library.
“HDF5 can store two primary objects: datasets and groups. A dataset is
essentially a multidimensional array of data elements, and a group is a structure
for organizing objects in an HDF5 file. Using these two basic objects, one can
create and store almost any kind of scientific data structure, such as images,
arrays of vectors, and structured and unstructured grids. You can also mix and
match them in HDF5 files according to your needs.)” [An Introduction to HDF5,
http://www.hdfgroup.org/HDF5/doc/H5.intro.html, 21.03.2007]

The first chapter describes and explains the data format HDF concepts and
details. The NCSA implementation of this format, the HDF5 C-library, is then
described and some simple and more complex C examples are given.

The second chapter introduces the F5 library which is built on top of HDF5.
Fiber bundles are introduced, which are the mathematical basis of the F5 data
concept. The data concept is presented and, finally, the F5 library, including
installation and use, is described, which includes documentation of important
functions and data structures.

The third chapter demonstrates the use of F5 in an example data structure
that supports operations on a basic tensor field type. Functions for reading and
writing to file and getting meta data or finding minimum and maximum values
are implemented. Two versions of this code are presented, one in C, the other in
C++, using the generic programming approach.

The thesis ends with a short conclusion.

6

Hierarchical Data Format (HDF)

The Hierarchical Data Format (Version 5, HDF5) was first released in 2002 by
the National Centre of Supercomputing of Illinois.

HDF was designed with respect to application in science and engineering. It
should be able to handle as many differently structured data as possible for data
storage. This could, for example, be data collected from numerical computations
given on a multi-grid, as well as data coming from measurements containing
additional meta data.

Scientists use many different programming languages and platforms to
develop and run their tools. The developers of HDF5 aimed for maximal
compatibility of their library to as many programming languages, platforms and
development tools as possible. Only then collaboration and data exchange among
the scientific community can be theoretically made possible.

Besides data exchange, data archiving is also an important issue. Especially
reading old data, created and stored by somebody who is not available any more
is a big problem. If no sufficient documentation is available, this is a time
consuming process. After having figured out how the data technically is stored
also the interpretation of its meaning has to be figured out, which is either
difficult or impossible. A standardised format that allows all necessary meta data
to be added inside the data file itself would be a great advance.

While supplying such additional functionality and structure, this must not
have major effects on the performance of read and write operations to the data. If
using raw binary formats for large data sets is a lot faster, nobody would consider
replacing his data operations with the library supplied methods.

The HDF5 group with their development of the HDF5 library tried to
address all these problems and supply the community with a ready to use free
software implementation of the HDF data format. Easy to install with hooks to
many commonly used languages and compilers the library should serve the
developers of scientific software tools.

The library comes with a set of command line tools. A tool for examining
the content of a HDF5 file and printing the out the content in ASCII for
debugging purposes is included. Also tools for getting general information about

7

the content of a HDF5 file or comparing two files are supplied.

The general development aim of the HDF5 developer group was

“To develop, promote, deploy, and support open and free technologies that
facilitate scientific data exchange, access, analysis archiving and discovery.”
[taken from the slides of a introductory talk by Mike Folk, manager of the HDF
Group]

Key Features of the HDF5 library

Data files can be of “unlimited” size.

The size is only limited by the size of the available physical storage.
Limitations, like a maximum file size limits stemming from the use of 32 bit file
pointers, are dealt with inside the HDF5 library. In this case, for example, the
HDF5 library can distribute the data between numerous files or disks. Despite of
the change of the underlying properties like memory architecture or bus widths
the access method to the data never changes. This also holds true if HDF5 files
are transported between platforms.

HDF5 data files can have an “unlimited” size of objects stored in them.

It was diligently paid attention to portability and extensibility. This also
ensures that the library can and will be updated and adapted to future systems.

The HDF5 library is available for several platforms and different
languages. There are distributions for C, C++, Java and Fortran90 and the
platforms AIX, UNICOS, FreeBSD, HP-UX, SGI Altix, SGI IRIX, Linux, Mac
OS X, OSF1, Solaris and Windows® MVS6.0 and 2003.net are officially
supported. This covers to a great extend the platforms that are used by the
scientific community.

The data model of HDF5 is simple and flexible. Many other already
existing file formats can be mapped to a HDF5 file. An example for this is the
HDF5 equivalent to the NetCFD1 file, developed by the HDF5 team.

HDF5 supports many data types. Starting from types like DEC-Alpha-
Integer to the IEEE64 bit big endian float type. It is, in addition, also possible to

1 NetCFD is a file format created by NCAR to store atmospheric research and modelling data.

8

create user defined data types, see section Concept of Data Organisation, Data-
types.

Meta information like endianness, size and architecture is always stored for
a data type, so all information for reading the data is self contained.

The data types together with a grouping and linking mechanism to organise
data allows to create an unlimited variety of complex data types.

The design of HDF5 includes an I/O layer, called virtual file layer (VFL).
Users can write own I/O drivers to access data directly via network, for example.

HDF5 allows for separation of meta data and raw data. A HDF5 file can
be split to in two files one containing only meta data and the other only raw data.
An application still sees these separated files as one logical HDF5 file. The meta
data file and the raw file may also be located on different files systems or on
different computers. The meta data on one system might be optimized for many
small I/O accesses and the raw data on different system could optimized for
sparse I/O accesses but transporting much data, as a tape based storage device
would do. Raw data files can also be shared between different meta data files to
reduce disc space usage, see figure 1 for an example.

HDF5 is able to compress data for storage. It uses the zlib library [ZLIB05]
for this purpose, but the user can also provide his own compression or filtering
methods. These transformations can be inserted into the I/O operations chain.

Data types can be converted during HDF5 I/O operations. Data types are
organised in several classes and can be converted inside the according class
during I/O. For example, types of the class float can be converted to different

9

Figure 2: Extensibility of arraysFigure 1: Separation of raw and meta data

float types, like the conversion of a 4 byte little endian float to a 6 byte big-endian
float.

The data array type can be extended, if necessary, in all possible directions
along all dimensions, see figure 2. The size of a data set must not be known at
creation time and the data has not to be written at once but can be written in
smaller blocks.

HDF5 supports sub selection and spatial data transformations during I/O
operations. This is important when working with large data sets. Complex sub
selections of data sets can be achieved by union operations.

The transferred selection can be transformed to a different shape. Figure 3
shows an example, where a sub selection of a 2-dim array is transformed into a 1-
dim one during I/O operation. The number of involved elements must not change,
of course.

Additionally, an element of a data set may consist of several other data
objects. Such an element is then called a compound. Figure 4a illustrates a
compound consisting of two floats, an array of floats and a second float . This
compound is an element of the left array in figure 3.

Compound components can also be transformed to different compounds
during I/O. Figure 4b shows a compound after a possible I/O transformation.

10

Figure 3: Sub selection and spatial data transformation

Figure 4a: Source Compound Figure 4b: Target Compound

Concept of Data Organisation

A HDF5 data model is a directed graph structure with one root node. It is created
from the following components: groups, data-sets and links. Groups and data-
sets are nodes in the graph. Links and “contained in” relations are edges. Files,
attributes, data-types and data spaces are additional components that are not
related to the graph structure.

● File:

A file serves as the container for all other hdf5-objects that build up the
complete data structure. The file holds meta data information and the root
node, a group object, named the root group “/”.
The physical file on disk typically has the extension “.h5”.

● Group:

A group is a hdf5-named-object. It consists of a group header containing
the group name and a list of attributes and a list of other hdf5-named-
objects, the elements of this group, in a symbol table.

A group is similar to a directory entry in a UNIX or a folder in a
Windows® file system, but may contain cycles. A graph as shown in
figure 5 is allowed in HDF5 (with A, B, C being groups) but not in a file
system (with A, B, C being directories respectively).

● Data Set:

A data-set is also a hdf5-named-object. It consists of a header and a data
array. The header contains the information necessary to read the array and
meta data. This includes the name of the data in alphanumeric ASCII
characters, a list of attributes, the data-type of all the data array elements,
the data-space of the array (dimensions and sizes) and the layout the data
is stored in.

11

Figure 5: Graph cycle

The storage layout describes the ordering of the array elements in memory
or in the file.

A contiguous layout, for example, arranges one element besides
another, such that one continuous block of data is created.

Other possible layouts comprise the compact and chunked layout, see
chapter “II Using HDF5-The Specifics” section “Datasets” in [H5U06].

The data array itself is a rectangular array of simple or compound
data-types up to a dimensionality (rank) of 32. This maximum dimen-
sionality is defined in the HDF5 library. The HDF5 file format theoreti-
cally supports a rank up to the maximum integer value.

● Links

Links are used to share hdf5-named-objects between hdf5-named-objects.
There are hard and soft links.

A hard link is an element in a group and must point to an existing
hdf5-named-object. “X is contained in a group” is equivalent to “The
group contains a hard link to X”. Group membership is also implemented
via hard links. A hdf5-named-object remembers the number of hard links
pointing to it in a reference counter.

A soft link is an element in a group that holds a pathname to a hdf5-
named-object, which may or may not exist. No reference counter is stored
for a soft link.

Figure 6 shows a possible structure in a HDF5 file. The root group “/”
holds the two groups “/ALPHA” and “/BETA” and a data-set

12

Figure 6: HDF5 structure example.
The ellipsoids illustrate groups, the rectangles illustrate data-sets and the

arrows links. A black arrow represents a hard link and a grey arrow a soft link.

“/Main_Data”. “/Main_Data” is shared between the two groups using hard
links. Each group also contains its own data-set “/Local_Data” and soft
links to itself and the other group.

● Data Type:
A data-type is a description of a data element, which forms the building
blocks of arrays. A data-type can be an atomic data-type, a native data-
type, a compound data-type or a named data-type.

Atomic data types are data-types that cannot be split further. HDF5
supports seven different classes of atomic types: integer, float, string,
bitfield, time, opaque and reference. For each of these classes a different
set of properties is stored.

For example, an atomic type of class integer has the properties size in
bytes, precision in bits, offset in bits, pad, byte order and signed/unsigned.
These properties can be read or modified by functions of the data-type
interface section.

The list of properties for a float type is size in bytes, precision in bits,
offset in bits, pad, byte order, sign position, exponent position, exponent
size in bits, exponent sign, exponent bias, mantissa position, mantissa size
in bits, mantissa sign, mantissa normalization and internal padding.

Properties of other atomic data-types can be found in chapter “II.
Using HDF5-The Specifics” section “Datatypes” table 1 in [H5U06].

Native data-types are atomic data-types, which are platform
independent. These native types should be used by the programmer, as
HDF5 automatically chooses the best matching atomic data-type for file
storage according to architecture and platform.

For example, a C double value should be represented by the native
data-type H5T_NATIVE_DOUBLE in the application. When this type is
written to a file on IA321 platform the HDF5 file contains the data-type
description H5T_IEEE_F64LE, which stands for IEEE float 64 bit little
endian. When the same native type is written to a file on a SPARC
platform the file would contain a H5T_IEEE_F64BE, as this platform
uses big endian floats.

Compound data-types are collections of data-types. An element of a
compound data-type can be an atomic data-type or compound data-type. A
compound data-type is similar to a struct in the C programming language.

1 Intel Architecture, 32-Bit

13

Named data-types are hdf5-named-objects. They contain data-type
information independent of data-sets. They stand on their own and can
then be referred to by data-sets and attributes. A named data-type can be
shared among different data-sets or attributes.

● Data Space
One data-space object is required in a data-set or in a attribute. In a data-
set the data-space contains its rank, which is the number of dimensions of
the data array, the number of elements in each dimension and the
maximum number of elements in each dimension. The number of
dimensions can be fixed or unlimited. A fixed data-set cannot be extended
later on.

Besides defining the data-space of a data-set or attribute data-spaces
are also used during I/O operations, where they specify the elements
involved during the operation. Data-spaces can specify sub selections on
data-sets. Selections can be (a) contiguous n-dimensional, (b) non
contiguous equally spaced, (c) unions of selections and (d) a list of data-set
elements, see figure 7.

For example, a transforming I/O operation takes two data-spaces as
arguments, the source and the sink data-space for the involved data-sets.

● Attribute

Attributes can be associated to groups, data-set and named data-types.
Attributes provide a way to store additional user defined meta data to an
object. They consist of a name, a data-space and a data-type. Attributes
should be used to store small data to the associated objects. No sharing,
compression, chunking or sub selection is possible with attributes. They
aredirectly written into the header of the associated object.

14

(a) (b) (c) (d)
Figure 7: Data space sub selection examples

The HDF5 Library

The HDF5 library predefines basic data types and needed functions and comes
with binary tools for debugging and manipulation of hdf5 files. It s available for
C, C++ and FORTAN90 and JAVA.

The predefined functions are organised in the 12 sections:

Library Functions, Attribute Interface,
Dataset Interface, Error Interface,
File Interface, Group Interface,
Identifier Interface, Property List Interface1,
Reference Interface, Data-Space Interface,
Data-Type Interface, Filters and Compression Interfaces

Function naming convention is: “H5” + a letter of the section the function
belongs (printed in bold above)2.

More than 100 different basic data-types for different platforms, memory
layouts, bit depths, etc. are predefined. See section Concept of Data
Organisation, Data-Types for the properties of a data-type. A complete list of all
predefined data-types can be found in the HDF5 reference, see [H5R06].

New types also can be created using the functions of the Data-Type
Interface, which allow to set and get properties of a data-type.

Working with HDF5

The library can be obtained from the HDF group homepage [HDF06] in the
download section. There is a source distribution as well as multiple binary
distributions. The library has two dependencies to external libraries when
installed with all features. It uses SZIP [SZIP07] and the ZLIB [ZLIB05] libraries
for data compression.

1 Property lists are used to pass additional parameters to functions.
2 Exceptions are “H5” for library functions and “H5Z” for filter and compression functions.

15

Installation HDF5 for cygwin and Linux

This describes the installation procedure of the HDF5 source library inside the
MS-Windows® Cygwin [CYG07] environment. Cygwin is a portability library
and frame work that adds full POSIX standard compliance to MS-Windows®.
The HDF5 source installation is done analogously in Linux.

The described process follows mainly the instructions given in
http://www.hdfgroup.org/windows/INSTALL_Cygwin.txt.

The source distribution of hdf5 can be downloaded at the homepage
http://www.hdfgroup.com/HDF5/release/obtain5.html. For example the newest
version 1.8.0. The file hdf5-1.8.0-alpha5.tar.gz can be uncompressed and
unpacked using the command, for example into the /tmp directory.

tar xfz hdf5-1.8.0.tar.gz

 The LZIP library should have been installed by the installer of cygwin for the
standard installation. If the lzip library is missing the the setup of cygwin should
be used to add it, or it can be obtained in the hdf5 download section.

Next step is to get and compile the szip library [SZIP07]. A binary
distribution (szip_cygwin_encoder.zip) for cygwin can be found at [http:// www.
.hdfgroup.com/HDF5/release//obtain5.html, 2007].

If the hdf5 library should be installed for a local user, place all libraries in
sub directories of the users's home directory. If it should be installed globally then
the libraries should be put under the /opt directory.

Now the installation of hdf5 can be configured, for example by the
following command executed in /tmp/hdf5.

./configure --with-szlib=~/hdf5/szip --prefix=~/hdf5/hdf5 –enable-cxx

 This installs the library into the user's home directory specified by the flag --
prefix. The flag -enable-cxx enables support for c++. By default c is supported
only.

After the installation was configured the library can be compiled by
executing make in the /tmp/hdf5 directory and the compilation can be tested.

./make

./make check

16

If the self test procedures were successful one can proceed to the final installation
process.

./make install

This copies the libraries, binaries, header files and documentation to the directory
given under the –prefix option. The directory containing the hdf5 binary files
should be added to your PATH environment. In case of a local user installation
the following line should be added to the .bashrc file in the home directory.

export PATH=$PATH:~/hdf5/hdf5/bin

For a global installation add the according line at the end of your system wide
/etc/profile.

To test the library compile one of the example files using the compile
command script of hdf5, see section Using the Binary Tools.

h5cc -O3 -o h5_write /tmp/hdf5/hdf5-1.8.0-alpha5/examples/h5_write.c

After execution of h5_write the hdf5 file SDS.h5 should have been created in the
local directory. Its content can then be examined by h5ls, see section H5ls.

h5ls -rv SHS.h5

If this works successfully then the hdf5 library is ready to use.

Install hdf5 for MS Visual Studio®

This describes how to install the HDF5 library for Microsoft's Software
Development platform Microsoft Visual Studio® 2005 [MVS05]

The hdf5 binary distribution for the windows® compilers MSVC++ 6.0 and .NET
2003 can be found at ftp://ftp.hdfgroup.org/HDF5/current/bin/windows/, it is also
compatible with the newer Visual Studio® 2005 [MVS05].

Get the binary distributions of szip [SZIP] and zlib [ZLIB05] for windows
following the instructions here:
http://www.hdfgroup.com/HDF5/release/obtain5.html.

The archives contain header files, static and shared libraries. The archives

17

can be extracted, for example, using the tool winrar [RAR07] and should be
placed into folders like c:\hdf5\5-165-win-net, c:\hdf5\szip20-win-xp-enc and
c:\hdf5\zlib122-windows. The folder c:\hdf5\5-165-win-net\bin can then be added
to the PATH environment variable, by executing the sequence:

My Computer > Properties > Advanced > Environment Variables

The delimiter “;” separates between several paths. Commands like h5ls can then
be executed from any directory in the windows command prompt.

A new project in Visual Studio® can be created and configured. The search
paths that contain the header files have to be set. In our example the three
directories c:\hdf5\5-165-win-net\include, c:\hdf5\szip20-win-xp-enc\include and
c:\hdf5\zlib122-windows\include have to be added to the include path list of
Visual Studio®, see figure 8.

The same has to be done for shared library search paths. The library paths
c:\hdf5\5-165-win-net\lib, c:\hdf5\szip20-win-xp-enc\lib and c:\hdf5\zlib122-
windows\lib must be added to the “Additional Library Directories”, according to
figure 9.

The libraries must then be specification as additional dependencies as
illustrated in figure 10.

If the binary was dynamically linked, the shared libraries must be available
to the application at runtime. When executing your application windows® will
typically search for a dll in the following directories:

18

Figure 8: Configure include paths

“

1. The directory from which the application loaded.

2. The system directory. Use the GetSystemDirectory function to get the path
of this directory.

3. The 16-bit system directory. There is no function that obtains the path of
this directory, but it is searched.

4. The Windows directory. Use the GetWindowsDirectory function to get the
path of this directory.

5. The current directory.

6. The directories that are listed in the PATH environment variable. Note that
this does not include the per-application path specified by the App Paths
registry key.

“ [http://msdn2.microsoft.com/en-us/library/ms682586.aspx]

According to point 6 the folders containing the dlls should be added to your
PATH environment variable. They then are available to all applications in your
system, whether it is a stand alone console application or a shared library dll by
itself.

19

Figure 9: Configure library paths

Using the Binary Tools

HDF5 provides many command line tools for viewing, analysing, manipulating
and testing existing HDF5 files. These commands are placed in the hdf5/bin
directory. A complete documentation of the tools can be found at [H5R06].

Very useful tools for developing command line programs in Linux or within
cygwin/windows are h5cc and h5c++. If these command are used for compilation
and call the compiler specified during hdf5 installation. They add all hdf5
relevant compiler options and library and include paths.

 The two commands h5ls and h5dump produce human readable output and
are a valuable debugging tool during development.

The command H5ls

H5ls lists the content of an HDF5 file in different levels of detail. The command
without additional parameters prints all hdf5 objects inside the root group. To see
all objects and their types invoke h5ls -r (-r, for a recursive), which results in an
ASCII output of the following format:

/GroupName/GroupName/.../GroupName/ObjectName ObjectType

A partial example of the output of h5ls with recursive call option is listed below:

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D Group

20

Figure 10: Configure library paths

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/DTI_tensor Dataset

{56, 128, 128}

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/Positions Group

...

/TableOfContents/TypeInfo Type

The level of detail can be increased by adding the command line option -v, which
stands for verbose. This also shows the elements and data types of all objects, but
no data values of the data-sets. The complete description of all options is shown
with h5ls --help.

H5dump

H5dump dumps the entire content of a HDF5 file as ASCII1 text to the standard
output stream, which normally is directed to the terminal. When a lot of text is
displayed the standard output stream should be piped into a file, that can then be
displayed and browsed with a text viewer or editor.

h5dump test.h5>test.txt (UNIX)

This command redirects the standard output stream of h5dump into a new file
test.txt, which can then be displayed using less:

less test.txt (The less command is available on most UNIX systems)

Files of large data sets can become really big when doing this. Here is an excerpt
of how an ASCII dump looks like:

...

 GROUP "T=0.1" {

 ATTRIBUTE "Time" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SCALAR

 DATA {

 (0): 0.1

 }

...

This example shows the beginning of a group block and the content of an
attribute. The attribute “Time” contains one scalar float, which holds the number
0.1 as data value.

Objects are defined through keywords and limited by curled brackets. The

1 American Standard Code for Information Interchange

21

full grammar is defined in an data description language, see [DDL07], which is
given in BNF1-notation, see [BRO98]. H5dump transcribes to complete content
of the h5 file. To get a more compact view use h5ls instead.

1 Backus Naur Form

22

Writing, Reading and Debugging Data using HDF5

Storing a simple data-set

This example demonstrates how to store a one dimensional array of type double
to a HDF5 file using C. All steps to arrive at a working example are demonstrated
and necessary information is provided where it is necessary.

Programs that want to access hdf5 functions need to include the hdf5.h
header file. HDF5 identifies objects through an identifier, which is of type hid_t.
Each access to a file, a group, a data-set or a data-type will involve such a type.

To create a data-set several hdf5 objects are necessary. Several hid_t objects
need to be declared at the beginning of the main scope, as well as a hsize_t
datadim[1], used for setting the data-set dimensions, and a herr_t status for error
checking. The one dimensional array of double values will be accessed via the
pointer ddata.

hid_t file, dataset, datatype, dataspace;

hsize_t datadim[1];

herr_t status;

double*ddata;

Functions that return hid_t return a value smaller zero in case of an error.
Functions that return herr_t also return a value smaller zero in case of an error. If
an error occurs hdf5 puts an error message onto its error stack. This stack can be
printed into a stream.

H5Eprint(stdout)

H5Eprint() returns a herr_t and prints the hdf5 error stack into a stream specified
by a pointer FILE*.

After space for the array ddata was allocated and after it was filled with
numbers a HDF5 file is created.

file = H5Fcreate("write_00.h5", H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

H5Fcreate() returns a valid hid_t if it successfully creates a file. The first
parameter is the path and file name, the second a flag that defines the behaviour,
when a file with the same name is already existent. With the flag
H5F_ACC_TRUNC H5Fcreate() will overwrite all data in an already existing

23

file. The third and fourth parameters are a hid_t to a property list specifying
creation and access modes, which are here set to default by H5P_DEFAULT.

Next, data-space and data-type of the data-set are prepared. Our data-set is
an array of double values with n elements.

datadim[0] = n;

dataspace = H5Screate_simple(1, datadim, NULL);

datatype = H5Tcopy(H5T_NATIVE_DOUBLE);

H5Screate_simple() returns a hid_t for a created data-space. It takes the rank of
an array, an array of the sizes of each dimension and an array of the maximum
sizes for each dimension. The third parameter may be NULL, then the maximum
size is equal to the size specified with the second parameter.

H5Tcopy() returns a hid_t for a data-type of a type specified by the
parameter. The created data-space and data-type can now be used to create an
empty data-set.

dataset = H5Dcreate(file,"array_of_doubles", datatype, dataspace, H5P_DEFAULT);

With H5Dcreate() a data-set is created and a hid_t is returned. The first parameter
hid_t describes the location in the file. It can be the file id or a group id. The
second parameter, of type const char*, is the name of the created data-set. The
third and fourth parameter specify the data-type and data-space of the data-set.
The last parameter can be used to pass a property list, which allows set more
options, like storage layout, compression or external storage.

Next, the empty data-set can be filled and written to the storage device.

status = H5Dwrite(dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL,

H5P_DEFAULT, doubledata);

H5Dwrite() writes data into a given dataset and returns an error status herr_t. The
first parameter hid_t specifies the data-set that will be filled with data. The
second parameter hid_t passes the memory type of the data elements of the set.
The third and fourth hid_it are data-spaces that can be used to write only parts of
the data-sets. If both are set to H5S_ALL the complete data-set is written. Again,
additional options can be passed by property lists, here using the fifth parameter.
Finally, the last parameter specifies a pointer of type void* to the array holding
the data.

The function calls listed above opened a data-space, a data-type, a data-set

24

and a file. These objects should be closed by the according functions.

H5Sclose(dataspace);

H5Tclose(datatype);

H5Dclose(dataset);

H5Fclose(file);

The c-file can be compiled, for example, by using the h5cc command.

h5cc -o write_00 -O3 write_00.c

Executing write_00 creates the file write_00.h5 in the local directory, which can
be examined by h5ls and h5dump:

Reading a simple dataset

The lines of code provide an example to read the data-set created in the first
example. Since similar hdf5 objects are necessary as above the declaration block
is omitted here.

 file = H5Fopen("write_00.h5", H5F_ACC_RDONLY, H5P_DEFAULT);

H5Fopen() returns a hid_t of a opened file. The first parameter specifies the file
system path and the file name as a const char*. The access mode is described by
the second parameter. This includes read only, write only or read and write.
Additional options that can be passed via a property list are buffered I/O,

25

$ h5ls -rv write_00.h5

Opened "write_00.h5" with sec2 driver.

/array_of_doubles Dataset {5/5}

 Location: 1:792

 Links: 1

 Modified: 2007-03-18 16:30:17 WEST

 Storage: 40 logical bytes, 40 allocated

 bytes, 100.00% utilization

 Type: native double

$ h5dump write_00.h5

HDF5 "write_00.h5" {

GROUP "/" {

 DATASET "random doubles" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (5) /

(5) }

 DATA {

 (0): 0, 6.90001, 5.05418,

 (3): 5.91491, 5.54785

 }

 }

}

}

unbuffered I/O or parallel file I/O using MPI.

Hdf5 objects inside the file can now be opened.

dataset = H5Dopen(file, "random doubles");

H5Dopen() returns a hid_t of a data-set. It opens the data-set specified by a
location (hid_t) and the name of a data-set. The location may be a file or a group
id. The name of a data-set can, for example, be retrieved by using h5ls. Also,
other mechanisms to open a data-set without knowing its specific name exist, see
section Reading Groups, Comments, Attributes and Links.

Size and data type of a data-set have to be extracted before it can be read.

datatype = H5Dget_type(dataset);

datasize = H5Tget_size(datatype);

With H5Dget_type() we get a hid_t of a data-type of a specified data-set.
H5Tget_size() returns the size_t of a data-type in bytes.

Also the dimensions (rank) of the hdf5 array have to be determined, what is
done via a data-space.

dataspace = H5Dget_space(dataset);

rank = H5Sget_simple_extent_ndims(dataspace);

status = H5Sget_simple_extent_dims(dataspace, datadim, NULL);

H5Dget_space() returns a hid_t of a data-space of a data-set. From the data-
space the rank and the number of elements in each dimension can the obtained
using H5Sget_simple_extent_ndims(), which returns the rank as an int, and
H5Sget_simple_extent_dims(), which returns the number of elements and the
maximum number of elements via two hsize_t pointers. In our case the maximum
number is not needed. So, the last parameter is set to NULL.

The data collected above can be used to allocate memory for the data array.

doubledata = (double*)malloc(datadim[0] * datasize);

And data is read from the data-set.

H5Dread(dataset, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, doubledata);

H5Dread() returns a herr_t and reads a data block from an opened data-set
into an array. The parameters specify the data-set, the data-type, the memory

26

data-space, the file data-space, a property list and the array (void*). The two data-
spaces can be used to read sub selections of the data-set.

H5Tclose(datatype);

H5Dclose(dataset);

H5Sclose(dataspace);

H5Fclose(file);

Finally, the opened HDF5 objects have to be closed.

Creating Groups, Attributes, Comments and Links

In this example a hdf5 structure as shown earlier in figure 6 is created. Besides
groups, data-sets and links some additional attributes and comments are created
and assigned to some of the hdf5-named-objects.

First the data-set called “Main_Data” contained in the root group of the hdf5
file is created and a comment is associated.

dataset = H5Dcreate(file, "Main_Data", datatype, dataspace, H5P_DEFAULT);

H5Gset_comment(dataset, ".", "Measured by Arno Arnold");

H5Gset_comment() returns a herr_t. The first parameter hid_t specifies the
location and the second parameter the name of the object that should get the
comment. The last two parameters must be given as const char* string.

The name is a path in the hdf5 file. A path has a similar syntax to file system
paths in UNIX, for example: “/groupA/datasetA”. A path is absolute, when
starting with “/” and relative otherwise. If its relative then it is relative to the
location specified by the first parameter (a hid_t). The “.” is a relative path to the
current location.

The following two H5Gset_commt() calls are equivalent to the one above.

H5Gset_comment(file, "Main_Data/", "Measured by Arno Arnold");

H5Gset_comment(dataset, "/Main_Data/", "Measured by Arno Arnold");

Next an attribute is created and associated with the data-set “/Main_Data”.

datadim[0] = 1;

dataspaceA = H5Screate_simple(1, datadim, NULL);

datatypeA = H5Tcopy(H5T_NATIVE_DOUBLE);

Here data-space and data-type have been prepared for the attribute.

27

attrib = H5Acreate(dataset, "offset", datatypeA, dataspaceA, H5P_DEFAULT);

H5Awrite(attrib, datatypeA, &attr_val);

H5Acreate() returns a hid_t for an attribute. The parameters are location, name,
data-type, data-space, and a property list. After the attribute was created a number
can be stored inside.

H5Awrite() returns a herr_t and takes, the id of the attribute, its data-type
and a pointer to the attribute value.

H5Sclose(dataspaceA);

H5Tclose(datatypeA);

H5Aclose(attrib);

Again involved object have to be closed.

Next, the two groups “/ALPHA” and “/BETA” are created.

group = H5Gcreate(file, "/ALPHA", 0);

H5Gcreate() returns a hid_t of the created group and takes a location, a path and
a size_t. This size is used by hdf5 to allocate memory in bytes for names that will
be stored in the group header. This parameter is optional and can be set to zero,
since dynamic resizing is supported. It is faster to pre define the sizes, though.

After a group was created it remains open and members of the group can be
created. Assume that a data-set called “Local_Data” is stored inside the group.
Afterwards the group must be closed:

H5Gclose(group);

Creation of the second group “/BETA“ and its local data-set is done analogously.

The links in the hdf55 file have to be created:

H5Glink(file, H5G_LINK_HARD, "/Main_Data", "/BETA/Main_Data");

H5Glink(file, H5G_LINK_HARD, "/Main_Data", "/ALPHA/Main_Data");

HSGlink() returns herr_t and creates a link at a given position and path. The
second parameter specifies if the link is hard or soft. The link points to the path
specified by the third parameter. The fourth parameter is the path of the link
itself.

 In the example above, links inside the groups “/BETA” and “/ALPHA”

28

called “Main_Data” point to the data-set “Main_Data” in the root group. Thus,
Main_Data is shared between both groups because the hard link behaves like a
real data-set, when being accessed.

H5Glink(file, H5G_LINK_SOFT, "/ALPHA", "/BETA/next");

H5Glink(file, H5G_LINK_SOFT, "/BETA", "/BETA/previous");

H5Glink(file, H5G_LINK_SOFT, "/ALPHA", "/ALPHA/next");

H5Glink(file, H5G_LINK_SOFT, "/BETA", "/ALPHA/previous");

The same function is used to create soft links, which point to the groups itself and
the other group. They can now be used to access the so called “next” and
“previous” object of this data structure.

Examining the written file by h5ls -r gives a overview over the structure,
compare figure 6:

$ h5ls -r write_03.h5

/ALPHA Group

/ALPHA/Local_Data Dataset {3}

/ALPHA/Main_Data Dataset {3}

/ALPHA/next -> /ALPHA

/ALPHA/previous -> /BETA

/BETA Group

/BETA/Local_Data Dataset {3}

/BETA/Main_Data Dataset, same as /ALPHA/Main_Data

/BETA/next -> /ALPHA

/BETA/previous -> /BETA

/Main_Data Dataset, same as /ALPHA/Main_Data

29

 h5dump shows the complete structure:

30

$ h5dump write_03.h5

HDF5 "write_03.h5" {

GROUP "/" {

 GROUP "ALPHA" {

 COMMENT "Ordinary Node"

 DATASET "Local_Data" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (5) /

 (5) }

 DATA {

 (0): 1, 62.4102, 36.6531,

 47.8159, 42.8743

 }

 }

 DATASET "Main_Data" {

 COMMENT "Measured by Arno

Arnold"

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (5) /

 (5) }

 DATA {

 (0): 1, 7.90001, 6.05418,

 6.91491, 6.54785

 }

 ATTRIBUTE "offset" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (1) /

 (1) }

 DATA {

 (0): 3.6

 }

 }

 }

 SOFTLINK "next" {

 LINKTARGET "/ALPHA"

 }

 SOFTLINK "previous" {

 LINKTARGET "/BETA"

 } LINKTARGET "/ALPHA"

 } }

 GROUP "BETA" {revious" {

 COMMENT "Ordinary Node"

 DATASET "Local_Data" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (5) /

 (5) }

 DATA {"/ALPHA/Main_Data"

 (0): 2, 2, 2, 2, 2

 }

 }

 DATASET "Main_Data" {

 HARDLINK "/ALPHA/Main_Data"

 }

 SOFTLINK "next" {

 LINKTARGET "/ALPHA"

 }

 SOFTLINK "previous" {

 LINKTARGET "/BETA"

 }

 }

 DATASET "Main_Data" {

 HARDLINK "/ALPHA/Main_Data"

 }

}

}

Reading Groups, Comments, Attributes and Links

This example shows how to open groups, get comments, get attributes and how to
iterate over hdf5-named-objects in the HDF5 file.

group = H5Gopen(file, "/ALPHA");

H5Gopen() returns a hid_t of the open group. Many operation do not need a
group to be open. But some functions only take a location hid_t of a opened hdf5
object and so the it has to be opened in before, for example:

H5Gget_num_objs(group, &objnum);

H5Gget_num_objs() returns herr_t. It returns the number of hdf5-named-objects
contained in the group into a pointer hsize_t* (second parameter).

Names and data-types of group elements can now be extracted using an
index.

for(j = 0; j < objnum; j++)

{

H5Gget_objname_by_idx(group, j, buffer, 512);

t = H5Gget_objtype_by_idx(group, j);

printf("Object %d: %s type %d\n", (int)j, buffer, t);

}

H5Gget_objname_by_idx() returns herr_t and the name third parameter (char *).
The second parameter is an index (of type hsize_t) and the fourth parameter
passes the size of the buffer. The index is transient, what means that the index is
only valid in the currently open group and can be different if the same group is
opened again later.

H5Gget_objtype_by_idx() returns an int for the type of the hdf5 object at
specified the group and index. Type number 0 stands for a soft link, 1 for a group,
2 for a data-set and 3 for a named data-type.

 Another way to iterate through members of a group makes use of the
H5Giterate() function. The group need not be open in before in that case.

H5Giterate(file, "/", NULL, file_info, NULL);

H5Giterate() returns an int, which is the return value of the function specified by
the fourth parameter. It returns 0 if all elements of the group have been

31

processed. The function iterates over all members of the group specified by
location id and path. The third parameter int* is a pointer to an index where the
iteration starts from. If it is set to NULL then the iteration starts with the first
element of the group. The fourth parameter is a function pointer of a function that
is called during iteration. Information can be passed to the function by using the
fifth parameter, a void* pointer. See [H5R06] for more information.

Comments that have been associated to hdf5 object can be read by the
following function.

H5Gget_comment(file, "/Main_Data", 512, buffer);

H5Gget_comment returns herr_t and reads the associated comment of a hdf5-
named-object specified by id and path into the char* string buffer. The third
parameter passes the size of the buffer.

An attribute has to be opened before its value can be read. Similar to the
group functions attributes can be identified by name or by index. Functions to get
the number of attributes and for iteration are provided also, functions to get the
attribute´s data-space and data-type.

attrib = H5Aopen_name(dataset, "offset");

H5Aread(attrib, H5T_NATIVE_DOUBLE, &offset);

H5Aread() returns herr_t and reads the attribute of type hid_t at a void*. In this
example into a double offset.

32

Maya Plug-In HDF5_Read_Fluid

A plug-in for the 3D application Maya® [MAY07] was developed under
Windows® using Visual Studio® 2005. It demonstrates the previously discussed
functionality of HDF5.

The Maya® command plug-in reads a three dimensional density distribution
from a HDF5 file into a Maya container for volume data. Before executing the
command a Maya scene has to be prepared and must contain a volume container.
The command implemented added by the plug-in must be executed while the
container is the selected object in the 3D scene.

A Maya® fluid container allows usage of colour maps and to scale the
visualised density dependent on the density value of the underlying scalar field.
Figure 11 shows a rendered images of a density distribution, which was provided
by the relativity group of the Lusiana State University [LRG06]. The visualised
density was scaled so that certain values of the density distribution form volume
slices. They create a visual effect that is similar to displaying transparent iso-
surfaces. Maya® produces smooth interpolated results with according high quality
settings given the discrete data field with a resolution of 50x50x50 points. The
images have been rendered with the rendering engine Mental Ray® [MEN07].

For a detailed description of Maya® plug-in programming see [GOU03].

33

Figure 11: Visualisation of a 3D density distribution

F5

HDF5 provides efficient mechanisms for storing multidimensional arrays
together with properties but it does not store additional information on the data
like: “what is it” in any form. No information that would identify and allow
correct interpretation of the contained data is added to the hdf5-file automatically.
The F5 library tries to address this problem for the case of scientific data and
offers a mechanisms to store the contextual information together with the data
itself. HDF5 grouping, attributes and comments are used for this purpose.

F5 allows to formulate general concepts like a field, in a way that the data
can be identified as representing a specific field, for example a vector field.
Additional information that is needed for correct interpretation of the data, like
the spacial distribution of the points a field is given on, is either stored in hdf5
data-sets or by making use of the hierarchical structures available from hdf5. All
mechanisms to access subsets of data are mapped to the same efficient methods
that are found in hdf5. In addition, the overhead for working through the F5 API1
is kept minimal so there is nearly no performance penalty when using the F5
library. A C version of this API is available.

The broader aim of the F5 is to offer a complete data model for applications
that operate on scientific data. It aims to avoid the need of repeated re-
implementation of data file reader and writer code. F5 offers a sufficiently
complete way to operate on, save and load scientific data on a high user level .

The concept, F5 was developed after, is based on the concept of fiber
bundles, see section Fiber Bundles below. The proposition, developed by Butler
and Pendly [BP89] that suggests to create a layered structural representation of
manifolds by repeated aggregation of simpler objects and to apply the abstraction
provided by the concept of vector bundles is as follows:

“At the lowest level, both the base and fiber are point sets, just collections of
points X. For the next layer, the notion of neighbourhoods is added to obtain a
topological space T :=X , like in def. 1 (see below). Then the notion of
coordinates and differentiability is added to get a manifold M :=T ,{{x }} ,
like in def. 19. The fiber of interest here is a vector space, which can be
considered as a manifold again, but with an additional layer of structure, i.e. the
structure of linear algebra in the case considered here. The next layer then

1 Application Programming Interface

34

aggregates the base space B and the fiber F into a bundle (B, F). Finally the
bundle is aggregated with a map, which allows to specify values in each fiber to
yield a section.” [BEN04, 2.2.2 p39].

Fiber

Building on this pioneering idea the fiber bundle data model was developed by
W. Benger [BEN04]. It allows the abstraction of the geometrical description of
spacial objects from their numerical representation in a specific coordinate
system and it offers an abstraction for the physical computation domain for the
underlying discretisation scheme. It also allows to formulate grid-independent
algorithms. It was implemented in C++ and makes use of generic programming
techniques.

Fiber Bundles

Fiber bundles are introduced on the basis of several definitions. The definitions
shown here are mainly taken from [BEN04]. Note, that this information is not
necessary to work with F5, but explains the background and motivation of the
data organisation.

(Def. 0)

Let S be a set. Then PS  is the set of all subsets of S , called the power set of S.

Example:

S={1,2,3 }, PS ={∅ ,{1}, {2 }, {3} ,{1,2}, {1,3 }, {2,3}, {1,2,3 }}

(Def. 1)

Let X be a set ∧ P X  be the power set. A subset ⊆P X  of the power set
is a topology iff :
1  arbitrary unions of elements of  are contained in  , i.e. if I is an arbitrary
also infinite set of indices a nd ∀ i∈I :U i∈ , thenU

i∈I
U i∈ ,

2 finite intersections of elements of  are contained in  , i.e. if

U 0, U1,. .. , U n∈ then ∩
i=0

n

U i∈with n∈ℕ ,

3  the emtpy set a n d the set X itself are contained ∈ ,i.e. ∅ , X ∈

35

(Def. 2)

The pair X , of a set X together with a topology  on this set is a
tolopogical space. The elements of a topological space are called points.

Examples:

The set S={1,2,3 }with topology ={∅ , {1 }, {1,2,3 }} is a topological space.

The set S with topology ={∅ ,{1}, {2 }, {1,2,3}}is not a topological space , since
the union {1,2 } is not contained in 

ℝ with the set of open intervals ={U
i
ai , bi:a i , bi∈ℝ , a ibi } is known as the

standard topology onℝ .

(Def. 5)

A subset A⊆X of a topological space  X , is a neighbourhood of an element of
p∈X iff it contains an element O of  that contains p :
A⊆X   p⇔∃O∈ : p∈O ,O⊆A

(Def. 6)

Two topological spaces X ,Y are homeomorphic , if there exists a bijective map
H : X Y such that open sets of X are mapped to open sets in Y a nd vice versa ,
i.e. the neighbourhood relations must be sustained under this mapping.
H is called homeomorphism o r topological map.

(Def. 10)

The cartesian product X ×Y of two topological spaces X ,Y with the respective
neighbourhood sets  x⊂P X  , y ⊂P Y  of the points x∈X , y∈Y
is a topological space , if the neighbourhood sets  x , y  of the
point x , y ∈X ×Y are given by  x , y={U∈x  ,V ∈y :U×V⊂W :W }

(Def. 50)

Let E an d B being topological spaces an d f :E B be a continuous map.
E ,B , f  is called a fiber bundle , if there exists a space F , such that the union of
the inverse image of f of a neighbourhood U b⊂B of each point b∈B is
homeomorph to U b×F :

E , B , f  fiber bundle⇔∃F :∀b∈B :∃U b: f −1U b≃U b×F

36

Thus, the space E can be locally be described by the product of a base space B
(carrier) and a fiber space F. If this property also applies globally in space, E = B
x F, then this bundle is called a trivial fiber bundle.

 This separation appears within the fiber data model, where data elements
are represented as fibers on geometrical entities. For example, a vector field on an
uniform grid, describing the velocity of a fluid is a scientific data structure that
can be represented by the data model. The vectors would be the fibers and the
uniform grid the base space. Here the fiber bundle would even be trivial, because
the fiber space is the same in each grid point and also the uniform grid is nested
in one space.

Figure 12 illustrates the general concept of the separation of a data structure
into base space and fibers, where fibers are shown as “hairs” on a torus (the base
space).

37

Figure 12: Separation into fibers and base space.
The hairs represent the fibers and the torus
represents the base space.

F5 File Organisation

The data structure inside a F5 file is organised in an acyclic graph containing
a root node. The F5 file stores numerical data in data-sets, which are located at
the end nodes1, the leaves of the graph. A path through the graph starting from
the root node to an data-set defines all properties of this data-set.

These properties are separated or grouped in six structuring elements, which
are ordered hierarchically:

Bundle → Slice → Grid → Topology → Representation → Field.

Figure 13 shows an example F5 data structure. Data-sets are nested at the
leaves, which are encircled with double lines.

Bundle
Bundle

Usually, a F5-bundle contains some data within a physical space, which
consists of spatial dimensions and one time dimension. Thus, the base space can
be modelled by a Cartesian product of time and space:

bundle base space:ℝ× (Eq. 1)

Since F5 stores discrete data, numerical data is stored at certain points of
time. All spatial data at an instant of time is grouped into a so called time slice.

The bundle is a container for slices, which is modelled by the root group in
the HDF5 file. It is the uppermost element of the F5 data structure.

1 No data field is contained in the root node.

38

Figure 13: Graph of F5 data organisation.

F5-slices are accessed via a float number representing the physical time of
the according slice. Note, that this is different to many approaches, where integer
time steps are used.

Besides time slicing one can also use a different float parameter to slice the
base space of a F5-bundle. Such a slice is then called a parameter slice, see
[Fib06, Related Pages, Slice]

Slice
Bundle/Slice

A slice represents a instant of time of a bundle. It contains geometrical
entities of the bundle at that time. Such a geometrical entity of a slice is called a
grid object.

A F5-slice is modelled as a HDF5-group, that contains F5-grid objects. A
grid object representing the same geometrical entity in a different time slice has
the same name in each time slice. So an object can be traced as it evolves in time.

Figure 14 shows an example of a slice a t=3.5 of a 2D shape evolving over
time, forming a 3D surface in the bundle. The intersection lines of the slice plane
and the curved surface represent a grid object in the slice.

39

Figure 14: Time slice of an evolving 2D shape.

Grid
Bundle/Slice/Grid

A F5-grid object represents a geometrical entity, a manifold, or to be exact,
a triangulation of a manifold1.

It is modelled as a HDF5-group with a custom name. It is a member of a F5-
slice and contains an atlas and F5-topology objects.

Data of a grid may be represented by different coordinate systems. All these
coordinate systems contained in the grid object are collected in the atlas, which is
modelled as a HDF5-group called “Charts”. Transformation rules between
compatible coordinate systems are stored there. For example, if the grid contains
some data represented in Cartesian coordinates and some in polar coordinates the
atlas would contain transformation matrices between those.

A grid object is decomposed in grid components, which share certain
properties and are grouped to F5-topology objects. A grid object may contain
many different topologies. The information of all grid components together
define the topological properties of a grid object. The union of all “Positions”
fields (see section Field) contained in a grid form the base space of the grid.

Topology
Bundle/Slice/Grid/Topology

The F5-topology object describes information about the topology of the
spatial elements it contains and their neighbourhood information. It is modelled
as HDF5-group, containing a data-set called “Neighbourhood” and certain
attributes. Data represented in certain coordinate systems is grouped into F5-
representations, which are also members of the topology.

The data-set neighbourhood defines which spatial elements are located next
to a certain spatial element. In the general case, this information is stored as a list
of indices of neighboured elements for each element. It is stored procedurally in
special cases. For example, the indices of the neighbours in a rectangular grid
layout of spatial elements can be calculated by a given index2.

1 Since F5 deals with discrete data.
2 Neighbours of a 3D spatial element with index (i,j,k):
i , j , k{i1, j1, k , i1, j−1, k , i−1, j1, k ,i−1, j−1,k  ,i , j , k1 , i , j , k−1}

40

Spatial elements of a topology are so called k-cells or collections of k-cells.
k stands for the dimension of the cell. Figure 15 shows different examples of k-
cells: (a) points are 0-cells, (b) edges are 1-cells, (c) faces are 2-cells and (d)
cubic volumes are 3-cells.

A spatial element can also be defined based on other spatial elements. For
example, an edge can be defined by two vertices or a path of connected edges can
be defined by a number of edges. To describe such 'higher order' structures an
index depth is introduced. The spatial element that is not based on others has
index depth 0 and is a point in space called vertex. The index depth represents the
number of dereferencing operations to get to the element with index depth 0.
Thus, an edge has index depth 1 and a path has index depth 2. The table below
shows different examples. (table taken from [BEN04, table 3.1, page 64])

Spatial element Index depth Dimensionality
Vertex 0 0
Edge 1 1
Face 1 2
3-Cell 1 3
Collection of Vertices 1 0
Path of edges 2 1
Surface built from faces 2 2
3-Cell complex 2 3
Set of cell complexes 3 3

Another property stored in the topology is the refinement level of a spatial
element. See figure 16 for an example showing some refinement levels of a
triangular surface.

Related spatial elements with different refinement levels must be of same
dimensionality and index depth. They can then be associated to spatial elements

41

Figure 15: Examples of a 0-cell, a 1-cell, a 2-cell and a 3-cell

of a different topology, with a different refinement level and a different number
of spatial elements.

 F5-topology objects are unique in a grid object and are identified by a
string. It holds an arbitrary number of F5-representation layers sharing the same
coordinate system properties.

F5 provides 4 predefined topologies, but other topology groups may be
defined: “Points”, “Edges”, “Faces” and “Connectivity”:

● Points:
This is the fundamental topological subgroup, because it contains the
vertex information of a grid.

● Connectivity:
This subgroup contains information about k-cells which construct a grid
(with k > 0). An example for a connectivity group would be a triangular
surface where the triangles are build by triples of indices to points of a
Points topology, see [FIB06, Related Pages, Topology Objects].

Representation
Bundle/Slice/Grid/Topology/Representation

The F5-representation layer holds information about the coordinate systems
valid in the data fields it contains and is a member of a F5-topology layer. It is a
HDF5-group named like the representing coordinate system.

A representation always contains one specific F5-field called “Positions”,
which stores the positions of the spatial elements of a topology. Furthermore, it
contains an arbitrary number of F5-fields with custom names, containing data at

42

Figure 16: Different refinement levels of a triangular surface.

the “Positions”. They have the same spatial dimension as the positions field. A
data element of a data field can then be mapped to the according “Positions” of
the spatial elements.

In a general case “Positions” is a HDF5 data-set of vertices using the same
indices as the data fields, see figure 17(a).

In the case of describing vertices in uniformly distributed 3D Cartesian
coordinates, only a position at the index (0,0,0) called origin and a vector called
delta describing the vector between two diagonal positions is sufficient, see
figure 17(b). A position dependent on the element index can then be calculated
by:

Pi , j , k=O i⋅1

j⋅2

k⋅3


P ... position , O ...origin
i , j , k ...array indices

(Eq. 2)

In that special case “Positions” is a HDF5-group containing the HDF5-attributes
called “origin” and “delta”.

The data fields contained in a representation group are the fibers of the grid
object. But, “Positions” is a F5-field and no fiber, since it is part of describing the
base space of the grid.

43

Figure 17(a): General “Positions” Figure 17(b): Uniform “Positions”

Several predefined coordinate systems are provided. Coordinate
representations are called “Charts” in F5:

Cartesian 4D Integer3D Cartesian 2D triangular
Polar 4D Rational3D Polar 2D edge

Cartesian3D Spherical 2D quad
Polar 3D Axial 2D tetrahedral
Cylindrical 3D Texture 2D hexahedral
Texture 3D

Field
Bundle/Slice/Grid/Topology/Representation/Field

A F5-field is an element of a F5-representation layer and is identified by a
custom string. It contains a discrete data set, an array. It maps an index or a tuple
of indices to a data element, which typically is an index, a scalar, a vector, a
colour or a tensor of order 2. F5 uses a HDF5 data-sets to store the data in the F5
file. Figure 18 shows a 2D uniform scalar field as an example for a F5-field.

The F5 data model allows to create many different types of evolving grid objects
and store data to their spatial elements or collections of elements. Also
representations using different coordinate systems are possible.

Data is shared inside the data structure by HDF5 links.

An unlimited number of structures can be build. Examples reach from
simple scalar fields on a uniform grids to colour fields on triangular surfaces to
many metric tensor fields on refining irregular meshes.

To work with F5 data it is not necessary to completely understand its data

44

Figure 18: Scalar field visualised as an intensity map(left) and a height map(right).

organisation. The user works on a simple interface that involves only slices, grids
and fields. Charts, topologies and further data organisation is encapsulated by
higher level functions.

The F5 Library

The F5 library is written in C and is available as full source distribution at
[FIB06]. Specially adapted distributions for the scientific applications CACTUS
[CAC06] and AmiraTM [AMI06] are available besides a standalone library.

Included with the standalone distribution is a make system [MEM07] that
comes very handy when developing F5 tools for different platforms since many
available platforms are supported.

After unpacking the compressed archive, the source files are found in the
directory F5/ and split to .h and .c files. Various applications can be found in the
F5/apps directory. They include examples, converters and tools.

The tools are: F5ls, F5merge, which was not yet implemented, Q5ls and
F5smoothparticels.

Some converters for different file formats to and from F5 are provided.
Certain F5 files can be converted to truevision's TGA1 images or to OBJ, a format
developed by alias-wavefront [tm] to store polygon based objects and free form
curves and surfaces.

 Some formats can only be converted to F5. This includes the following
formats: ADCIRC, used by a research group involved in hydrodynamics
[ADC06], the CARPET and GeoTIFF format for interchanging geo-referenced
raster images, MM52 a format for atmospheric data [MM506] and GSSE a format
for scientific computing from the GSSE3 group [GSS07].

The following section demonstrates how to work with existing F5 files using
the predefined library objects. Reading and writing files is explained. It would be
possible to to add, for example, new topology objects but this would require a
detailed description of F5 low-level functions, which cannot be provided here.

1 Truevision Advanced Raster Graphics Array
2 mesoscale model
3 Generic Scientific Simulation Envirnoment

45

Installation of F5 for Linux

An archive of the current release of the F5 library can be downloaded at [FIB06].
The file FiberHDF5.tgz is the standalone version of F5. It should be unpacked
and uncompressed into the directory, which will contain the F5 Library. The
archive already contains a directory FiberHDF5.

tar xfz FiberHDF5.tgz

For a local user installation this command can be executed in the home directory,
for a global installation a directory in /opt/ would be appropriate.

F5 provides a sophisticated make file that automates the installation process
including insatllation of the hdf5 library. To use this feature a make command
must be executed in the FiberHDF5/hdf5.ref directory.

 The Makefile in this directory must be edited in before. The hdf5 target
directory should be set (HDF_INSTALL_DIR) and the URL1 of the hdf5 archive
should be checked (HDF5URL).

./make get unpack configure make install_lib

This should download, extract and install the necessary hdf5 library files and then
compile and install the F5 library. For troubleshooting see the README file in
FiberHDF5/hdf5.ref.

If the installation was successful an example can be compiled, for example
in the directory FiberHDF5/F5/apps/examples/ScalarSimple. The TARGET in the
Makefile must be changed to ScalarSimple.

./make exec

This compiles and executes the example file. Four F5 files should have been
created in the local directory.

F5ls

F5ls is a tool for examining F5 files by printing its content in ASCII to the
standard output stream. To compile the F5ls binary execute

./make

1 Uniform Resource Locator

46

in the FiberHDF5/F5/apps/tools/F5ls directory. The binary will be compiled and
placed into a directory, which is named after platform and compilation mode, for
example, /FiberHDF5/F5/bin/arch-Linuxi686-Debug. This binary directory
should be added to your PATH environment variable, see section Install hdf5 for
cygwin and Linux.

For every time slice F5ls prints all grid objects and the fields they contain.
Its output is as follows:

******* Timeslice for t=0 *******

 Grid `steam' (no timestep information)

 Root level vertex fields:

 Positions : UniformSampling <0.1.2> Size: 3x2x2 cartesian coordinates

 Range: [0,0,0]-[1,0.5,0.5]

 temperature : Contigous <0.1.2> Size: 3x2x2 scalar

'Root level' specifies the refinement level of the following fields, which
stands level 0 here. The subsequent information given for the fields then is their
name, their internal memory layout, the size of each dimension and their type.
'<0.1.2>' is the current version of the field implementation. In case this
implementation changes, F5ls can still support different versions. The F5 file
shown contains a scalar field on a uniform 3 dimensional spacial grid.

The F5ls provides the user with all necessary information to work with the
F5 file.

Q5ls

Q5ls provides the same information as F5ls but is presented as a tree in an
graphical user interface window1. See figure 19 for an example:

1 The library Qt® from Trolltech® is used for this purpose [TRO07].

47

Figure 19: Screenshot of the content of the file Testpat_BD_TumporNeu.f5.

Important Data Types and Functions

Basic Data Types:

F5 supports a number of basic data structures, which can be used as basic
building blocks for more complicated data structures. Declarations are in the
header files F5types.h and F5coordinates.h. Most types are based on the two
types F5_float_t and F5_int_t, which are typedefs to a C-float and a C-int.

The following table shows data structures based on the typedef float
F5_float_t.

Type Description
F5_vec3_point_t struct of three floats called x,y,z representing a point

F5_vec3_float_t struct of three floats called x,y,z representing 3 floats

F5_metric3_float_t struct for metric33 tensor elements: gxx, gxy, gxz, gyy,

gyz, gzz

F5_polar_point3_float_t struct with elements r, theta, phi representing a point in

polar coordinates

F5_texture_point_t struct with elements u and v representing texture

coordinates on a surface

F5_rgb_real_t struct with elements r, g, b representing red, green and

blue colours. (as F5_float_t)

F5_rgba_real_t Same as above, but with additional element a for alpha

Structures based on typedef int F5_int_t.

Type Description
F5_edge_t struct with 2 elements i, j defining an edge

F5_triangle_t; struct with 3 elements i, j, k defining a triangle

F5_quad_t struct with 2 element i[2], j[2] defining a rectangle

F5_quadL_t same as above but different element i[4]

F5_faces_t struct with 3 elements i, j, k defining a triangular

surface

F5_tetra_t struct with 4 elements i, j, k, l representing a tetraeder.

F5_hexahedron_t struct with 4 elements i[2], j[2], k[2], l[2] representing a

cubic.

F5_hexahedronL_t same as above but with element i[8]

48

Other structures

Type Description
IntegerFraction struct with 2 elements int num, int denum

representing a rational number

IntegerFraction3D struct with 3 IntegerFraction elements x, y, z

F5_refinement3D_point_t union representing a 3D point using rational integer

coordinates with IntegerFraction3D crd or inedexed

IntegerFraction d[3]

TensorTypes A tensor representation based on F5Ttensor_t**

ChartDomain_IDs

The struct ChartDomain_IDs declared in F5Bchart.h is the internal
representation for coordinate systems (charts) and has the following layout:

const char* domain_name

unsigned refs

int perm_vector[FIBER_MAX_RANK]

hid_t Point_hid_t

hid_t Vector_hid_t

hid_t Covector_hid_t

hid_t Bilinearform_hid_t

hid_t Metric_hid_t

F5Ttensor_t** TensorTypes

Each Chart has a name, a reference counter and a permutation vector, that
specifies what ordering is used in multidimensional arrays1. The ids hid_t point
then to prototype elements of the coordinate system. These prototypes are stored
as HDF5-named-types and store the data types used for the numbers, names of
the elements and type of the coordinate. For example Point_hid_t could be the id
hid_t to a hdf5 compound type containing the elements of type
H5T_NATIVE_FLOAT with names “x”, “y” and “z”. For further examples see
[FIB06, Related Pages, HDF5 Chart Objects]

In the current version of F5 most floating point data are based on floats one
must create a new chart to write double floating point data. In contrast, reading of
double data to data of a compatible chart using float would be no problem, since

1 For example, C and FORTRAN use different orders.

49

HDF5 can convert them automatically.

 Functions to create supported chart objects (see section Representation) are
implemented in F5coordinates.c. They use four basic functions, which are
declared in F5B.h and defined in F5B.c. They return a struct ChartDomain_IDs
can be used to create new user defined charts.

F5B_new_global_domain() //for positional types,

F5B_new_global_chart() //for also tangential and tensor types,

F5B_new_integer_regular_domain3D() //for mappings between points and

F5B_new_rational_regular_domain3D() //for mappings using integer fractions.

F5Path

The struct F5Path declared in F5Path.h describes the location of a F5 object like
a slice, a grid, a chart, etc. inside the f5-hdf5-file. It contains all hid_t IDs of hdf5
objects involved. The F5Path struct is important when reading F5 files. All
objects that contain information can be accessed via the F5Path struct. It has the
following members:

ChartDomain_IDs * myChart hid_t Grid_hid

ChartDomain_IDs * FileIDs hid_t GlobalChart_hid

char * field_info hid_t Charts_hid

hid_t field_enum_type_hid hid_t Chart_hid

hid_t File_hid hid_t Topology_hid

hid_t ContentsGroup_hid hid_t Representation_hid

id_t Slice_hid hid_t Field_hid

Writing F5

Some high level functions have been implemented in the F5 library. They all
write or append data blocks of certain types to F5 files. For example, to write a
vector field specified on a uniform Cartesian 3D space following function can be
used:

 F5_API F5Path* F5Fwrite_uniform_cartesian3D(hid_t file_id, double time,

 const char*gridname,

 const F5_vec3_point_t*origin,

 const F5_vec3_float_t*spacing,

 hsize_t dims[3],

 const char*fieldname,

50

 hid_t fieldtype,

 const void * dataPtr,

 const char*coordinate_system,

 hid_t property_id);

The parameters include a file id, a time slice, the grid name, parameters to
specify the positions of the uniform grid, a field name, the type of the field
elements, the data pointer, a coordinate system and a additional property list for
HDF5.

The following field types declared in F5coordinates.h are available:

F5T_COORD3_FLOAT F5T_TRIANGLE

F5T_VEC3_FLOAT F5T_QUAD

F5T_METRIC33_FLOAT F5T_FACES

F5T_INT_FRACTION F5T_TETRAHEDRON

F5T_EDGE F5T_HEXAHEDRON

These are convenient #defines of chart functions and are pointing to elements of a
ChartDomainId. For example:

 #define F5T_COORD3_FLOAT F5B_standard_cartesian_chart3D()->Point_hid_t

The high level functions are declared in the header files:

F5particles.h for particle based data

F5surface.h for surface based data

F5uniform.h for data based on uniform grids

F5AMR.h for data based on adaptive meshes

F5image.h for image based data

Detailed information can be found on-line [FIB06] or directly in the source code.

Reading F5

Reading F5 data structures is done by iterators, similar to iterators used in HDF5.
F5 iterators are declared in F5iterate.h.

To open a certain field iterators over slices, grids and fields should be used.
First the time slice iterator must be called and a callback is function passed. The
callback is invoked in each slice iteration step and has to be implemented by the
user.

int F5iterate_timeslices(hid_t file_id, int *idx,

 F5_iterate_timeslices_t*ts_callback, void *user_data) ;

herr_t ts_callback(F5Path*slicePath, double time, void *user_data);

51

The iterator iterates over all time slices of the F5 file starting at group (or slice)
with index idx. User data can be passed to the callback function using the pointer
user_data. The current id to the F5 object (slice) in the iteration is available via
the struct F5Path.

To iterate over all grids in the slice group one has to call the F5 grid iterator
function inside the slice callback function.

int F5iterate_grids(F5Path*F5Slice, int *idx,

F5_iterate_grids_t*gr_callback, void *operator_data);

herr_t gr_callback(F5Path*grid, const char*gridname, void *operator_data);

Finally, a field iterator is used inside the grid callback function to iterate over
fields contained in a grid, for example for vertex based fields:

int F5iterate_vertex_fields(F5Path*grid, int *idx,

F5_iterate_fields_t*fd_callback, void *operator_data,

const char*coordinate_system, F5_fieldtype_t*what) ;

herr_t fd_callback(F5Path*field, const char*fieldname, void *operator_data);

Inside the field iterator the required data-set can be accessed using F5 functions
or HDF5 functions, like H5Dread().

The following example shows some pseudo code for an iteration to read a
field at a certain time in a certain grid:

typedef struct

{

char* grid_name;

char* field_name;

double time;

...

} my_Data;

herr_t fd_callback(F5Path*field, const char*fieldname, void *operator_data);

herr_t gr_callback(F5Path*grid, const char*gridname, void *operator_data);

herr_t ts_callback(F5Path*slicePath, double time, void *user_data);

int main()

{

F5Path Path;

my_Data dat;

/* fill data of dat */

...

F5iterate_timeslices(file_id, NULL, ts_callback, &dat);

return 0;

}

52

herr_t field_iterator(F5Path*field, const char*fieldname, void *operator_data)

{

my_Data*dat = (my_Data*)(operator_data);

...

if(strcmp(dat->field_name, fieldname) == 0)

{

/* open file, use F5 or HDF5 functions to read data-set */

}

return 0;

}

...

F5 functions that can be used for reading inside the field callback function are
field functions declared in F5F.h and high level functions of supported structures
like uniform grids (F5uniform.h), surfaces (F5surface.h), adaptive meshes
(F5AMR.h) and particles (F5particles.h).

Functions declared in F5F.h

All function use a F5Path to refer to a certain F5 object. This F5Path is
automatically provided inside the field iterator callback function.

Open and close a field by given F5Path and name.

int F5Fopen(F5Path*f, const char*fieldname);

void F5Fclose(F5Path*f);

Check if the field is a group.

int F5Fis_group(const F5Path*);

Get data-type and data-space of the field elements.

hid_t F5Fget_type(F5Path*f);

hid_t F5Tget_space(F5Path*f);

Permute a given array of dimensions to the memory ordering of a source
coordinate system.

hsize_t*F5Tpermute_dimensions(F5Path*fpath, int rank, hsize_t*target_dims,

 const hsize_t*source_dims);

Get the number of elements in each dimension of a given field. This is equivalent
to calling first F5Tget_space() and second F5Tpermute_dimensions(). Return
value is zero in case of an error.

53

int F5Tget_extent(F5Path*f, hsize_t*dims, int maxDims);

Get the index_depth of the fields elements, and the refinement level. Results are
returned via pointers. Return value is zero in case of an error.

int F5Tget_index_depth(F5Path*f, int*result);

int F5Tget_refinement_level(F5Path*f, hsize_t*dims, int maxDims);

Get the minimum and maximum values of the fields elements. Minimum and
maximum are stored as the same type as the field elements. In case a “Positions”
field is read this function can be used to get the bounding box of the positions.

int F5Fget_range(F5Path*f, void*min, void*max, hid_t memtype_id);

int F5Fget_fragment_range(F5Path*f, const char*fragment_name,

 void*min, void*max, hid_t mem_type_id);

Get the average value of all elements of a field.

int F5Fget_average(F5Path*f, void*avg);

Get the standard deviation of the average value.

int F5Fget_deviation(F5Path*f, void*dev);

Check if a field is a linear mapping of points to values.

int F5Fis_linear(F5Path*fpath, const char*fieldname);

Similar checks for different mappings.

int F5Fis_fragmented(F5Path*fpath, const char*fieldname);

int F5Fis_separatedcompound(F5Path*fpath, const char*fieldname);

Read a linear field. A linear field is completely described by dimensions,
origin(base) and delta. Return value is zero in case of an error.

int F5Fread_linear(F5Path*fpath,

 hsize_t*dims,

 hid_t fieldtype, void*base, void*delta);

int F5Fread_linearo(F5Path*fpath, const char*fieldname,

 hsize_t*dims,

 hid_t fieldtype, void*base, void*delta);

Get the F5Path of the according field in the previous time slice.

F5Path*F5FopenMostRecentSlice(hid_t File_id, double*t, const char*gridname,

 const char*fieldname,

54

 const char*coordinate_system);

Returns a hdf5 named data-type describing the field-type. The named data type is
also added to the file specified in F5Path.

hid_t F5file_type(F5Path*fpath, hid_t fieldtype);

F5Fgrab() returns the hid_t of a field and removes it from the F5Path.

hid_t F5Fgrab(F5Path*f);

Functions declared in F5L.h

These functions operate on fields but are of a lower level than those shown
above. They provide similar functionality and are not further described here.

F5LTget_index_depth(hid_t Top_hid);

int F5Lis_linear(hid_t Rep_id, const char*fieldname);

int F5Lread_linear(hid_t F_id, hsize_t*dims,

hid_t fieldtype, void* base, void* delta);

hid_t F5Lget_type(hid_t Field_hid, int FieldIDisGroup);

int F5Lget_field_dimension_and_type(hid_t Representation_hid,

 const char*fieldname,

 hsize_t dims[FIBER_MAX_RANK],

hid_t*type_id);

int F5LAget_dimensions(hid_t Field_id, const char*aname,

hsize_t dims[FIBER_MAX_RANK]);

Functions declared in F5uniform.h

Get bounding box and dimensions of a uniform grid of vertices in Cartesian 3D
coordinates.

hid_t F5BgetUniformCartesianGridVertexData3D(hid_t SliceID,

 const char*gridname,

 const char*fieldname,

 F5_vec3_point_t*bbox_min,

F5_vec3_point_t*bbox_max,

 int dims[3]);

55

Example F5 file

Data, collected and derived from a MRI1 scan of a human brain, was read using
the F5 library. More information about the MRI data sets can be found in
[BBH06]. The F5 file Testpat_BD_TumorNeu.f5 is serves as an example in this
thesis. First inspect the high level information contained inside the file by using
F5ls.

$ F5ls Testpat_BD_TumorNeu.f5

******* Timeslice for t=0 *******

 Grid `Testpat_BD_TumorNeu' (no timestep information)

 Root level vertex fields:

 DTI_tensor : *illegal* <0.1.1> Size: 128x128x56 metric tensor

 Positions : *illegal* <0.1.1> Size: 128x128x56 cartesian coordinates

 Range: [-12.8,-18.3593,-7.65525]-[12.6,7.04068,4.96347]

The file contains a metric tensor field called 'DTI_tensor' at time slice t=0.0, it
resides on a grid called 'Testpat_BD_TumorNeu'. The size and the range of the
Cartesian coordinates is shown. The 'Range' output informs us on the spacial data
range at the positions. At array index (0,0,0) the position of the element is (-12.8,-
18.3593,-7.65525) and at (127,127,55) it is (12.6, 7.04068, 4.96347).

Certain error messages are printed when using F5ls with the file. They come
from the changes the F5 library has undergone during development. The f5-file
was created with an older version of the F5 and hdf5 library. This is also the
reason why the array type is shown as *illegal*, but in fact it is “Contiguous” for
the “DTI_tensor” and “UniformSampling” for the “Positions”.

To examine the details of a F5 file one can use the hdf5 low level tools. This
step is usually not required, but demonstrates the F5 data organisation:

$ h5ls -r Testpat_BD_TumorNeu.f5

/Charts Group

/Charts/Cartesian3D Group

/Charts/Cartesian3D/Metric Type

/Charts/Cartesian3D/Point Type

/Charts/Cartesian3D/StandardCartesianChart3D Group

/Charts/Cartesian3D/StandardCartesianChart3D/Coordinates Group, same as

/Charts/Cartesian3D

/T=0 Group

/T=0/Testpat_BD_TumorNeu Group

1 Magnet resonance imaging uses images of magnet resonance tomography

56

/T=0/Testpat_BD_TumorNeu/Charts Group

/T=0/Testpat_BD_TumorNeu/Charts/StandardCartesianChart3D Group

/T=0/Testpat_BD_TumorNeu/Charts/StandardCartesianChart3D/GlobalChart ->

/Charts/Cartesian3D/StandardCartesianChart3D

/T=0/Testpat_BD_TumorNeu/Fields Group

/T=0/Testpat_BD_TumorNeu/Fields/Positions Group

/T=0/Testpat_BD_TumorNeu/Points Group

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D Group

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/DTI_tensor Dataset

{56, 128, 128}

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/Positions Group

/TableOfContents Group

/TableOfContents/Fields Group

/TableOfContents/Fields/DTI_tensor Group

/TableOfContents/Fields/DTI_tensor/Testpat_BD_TumorNeu ->

/TableOfContents/Grids/Testpat_BD_TumorNeu

/TableOfContents/Fields/Positions Group

/TableOfContents/Fields/Positions/Testpat_BD_TumorNeu ->

/TableOfContents/Grids/Testpat_BD_TumorNeu

/TableOfContents/Grids Group

/TableOfContents/Grids/Testpat_BD_TumorNeu Group

/TableOfContents/Grids/Testpat_BD_TumorNeu/T=0 -> /T=0

/TableOfContents/Parameters Group

/TableOfContents/Parameters/Time Group

/TableOfContents/TypeInfo Type

The root group contains time slices groups as well as the groups “Charts” and
“TableOFContents”. The “TableOfContest” group is introduced to organise data
in a reverse order, using groups and links. No real data is stored there. The aim is
to simplify traversing the graph internally. 'Charts' is a global atlas for the F5 file
and is similar to a grid specific atlas, see section Grid.

 The slice group is named “T=0” for the slice at time t=0. The slice contains
a grid object. Inside the grid object resides the atlas “charts” that contains the
coordinate system used in subgroups of the grid, a ”StandartCartesian3D”.

The grid object also contains a subgroup called “Fields”, which is an
additional linking in the structure to simplify data access for F5 internally.

“Points” is a topology of the grid that contains the coordinate representation
“StandartCartesian3D”. This representation houses the group “Positions” (which
contains origin and delta, according to section Representation) and the actual
tensor data-set.

57

Basic Tensor Type Data Structures in C and C++

To test and demonstrate the usage of F5 some data structures have been
implemented in C and C++. These data structures are an collection of objects and
functions to operate on tensor data based on uniform grids. Types for scalar,
vector and metric tensor fields have been implemented and are applicable off the
shelf.

C

This section presents one data structure implemented in C for operating on a
metric tensor field data. The other structures for scalar and vector types have
been implemented similarly and are therefore not described.

A struct TSMetric33F1 is declared, which can be used for storing data of one
metric tensor field of a uniform grid object of a certain time slice (declaration can
be found in TSMetric33F.h). The struct includes elements that store information
time, name of the grid, name of the field and name of the tensor elements, which
are “gxx”, “gxy”, “gxz”, “gyy”, “gyz” and “gzz”.

Other data collected in the struct are the minimum and maximum value of
the tensor elements, the positions of the grid points via origin and delta and a
pointer to the float data field containing the numerical data. The
multidimensional data is stored in an one dimensional array with a layout in the
following order: elements, x, y, z. (elements in the inner loop, z in the outer
loop)

typedef struct

{

double slice; // physical time of slice

char*grid_name; // name of the according grid object

char*field_name; // name of the according field

int elements; // number of tensor elements

char**elements_names;

hsize_t dim[3]; // xyz dimensions of data

F5_vec3_point_t origin; // position at position index xyz <0,0,0> of *data

 F5_vec3_float_t delta; // distances between two discrete positions

1 TSMetric33F stands for Tensor Slice Metric33 Float

58

float*elements_max; // max value of each element in order of memoryorder

float*elements_min; // min value of each element in order of memoryorder

int datasize;

float*data; // data block memoryorder elem, x,y,z

} TSMetric33F ;

Several functions that operate on the struct have been implemented as well. All
function names start with “TSMetric33_” and pass a pointer to the struct as the
first parameter.

There are functions to create and allocate memory for the elements in the
struct, to reallocate memory and to free a struct:

int TSMetric33F_create(TSMetric33F*TFS, const char*gridname,

const char*fieldname, double time,

 int xdim, int ydim, int zdim)

int TSMetric33F_reallocdata(TSMetric33F*TFS, int xdim, int ydim, int zdim)

int TSMetric33F_free(TSMetric33F*TFS)

There are functions to print further information on the console for debugging
purposes: information about the data excluding the numerical tensor field data, a
dump of all tensor element values and an output of one tensor at a given index.

void TSMetric33F_printinfo(TSMetric33F*TFS)

void TSMetric33F_printdata(TSMetric33F*TFS)

void TSMetric33F_print(TSMetric33F*TFS, int i, int j, int k)

A function that calculates the minimum and maximum values of each tensor
element.

void TSMetric33F_setminmax(TSMetric33F*TFS)

Data can be accessed through several methods. The user can decide to use set and
get functions. They implement index range check and fail if the index is out of
range.

int TSMetric33F_set(TSMetric33F*TFS, double d, int e, int x, int y, int z)

double TSMetric33F_get(TSMetric33F*TFS, int e, int x, int y, int z)

The user can also operate directly on the float* of the data block using memcpy
or similar.

When accessing the data block as an one dimensional array1 one can use the

1 In C pointer and array references can be used interchangeably.

59

index_map function that calculates the according one dimensional index for the
data array by given tensor element index and 3 indices of the 3D uniform grid.

int TSMetric33F_index_map(TSMetric33F*TFS, int e, int x, int y, int z)

Inside the index map function a range check can be enabled by a macro definition
previous to the inclusion of the TSMetric33F.h.

#define TS_INDEXCHECK

A program can be developed and executed in a “save” mode. After a successful
testing, the range check can then be disabled.

The index validation function is used internally and returns 0 if an index is
within the correct range.

int TSMetric33F_valid_index(TSMetric33F*TFS, int e, int x, int y, int z)

Finally, functions for reading and writing the data structure to and from a F5 file
are provided. Their parameters include a struct pointer, the file name, the time
slice, the grid name and the field name.

int TSMetric33F_append(TSMetric33F*TFS, char*filename)

The append function writes data of a TSMetric33F struct into the F5 file. It
creates a new file if the file specified does not exist, otherwise data is appended
to the file. If a field in the file has the same name, slice, grid, charts etc. it is
overwritten.

To overwrite a existing F5 file delete it before calling the append function1.

int TSMetric33F_open(TSMetric33F*TFS, const char*filename, double t,

const char*gridname, const char*fieldname)

The iterator callback functions are used internally in the open function, according
to section Reading F5.

herr_t TSMfield_iterator(F5Path*field, const char*fieldname, void *operator_data)

herr_t TSMgrid_iterator(F5Path*grid, const char*gridname, void *operator_data)

herr_t TSMtimeslices_iterator(F5Path*slicePath, double time, void *user_data)

1 For example, one can use the unlink(char *path) declared in unistd.h under Linux.

60

The following example opens a metric tensor field from a f5-file, modifies the
data and appends it into the same file at a different time slice.

//#define TS_INDEXCHECK

#include "TSMetric33.h"

int main()

{

 int e, i, j, k;

 TSMetric33F tumor;

 TSMetric33F_open(&tumor, “Testpat_BD_TumorNeu.f5", 0.0,

 "Testpat_BD_TumorNeu", "DTI_tensor");

 TSMetric33F_printinfo(&tumor);

 TSMetric33F_print(&tumor, 8,24,40);

 for(k = 0; k < tumor.dim[2]; k++) {

 for(j = 0; j < tumor.dim[1]; j++) {

 for(i = 0; i < tumor.dim[0]; i++) {

 for(e = 0; e < tumor.elements; e++)

 {

 tumor.data[TSMetric33F_index_map(&tumor, e, i, j, k)] =

 do_some_computation(e, i, j, k) * tumor.elements_max[e];

 }

 }}}

 tumor.slice = 0.1;

 TSMetric33F_append(&tumor, “Testpat_BD_TumorNeu.f5");

 TSMetric33F_free(&tumor);

 return 0;

}

C++

C++ language features allow to simplify and extend the possible functionality of
the F5 interface. Using C++ template techniques many structures can be mapped
to generic language expressions, which reduced lines of code and simplifies code
modification and expansion, see [STR97].

A template basis class UniformSlice declared in the file UniformSlice.hpp is
introduced that is compatible to all data structures defined on an uniform grid. It

61

stores one data field of one slice. The basic number type of the tensor elements
are determined by the generic type of the template (for example float). Only the
member functions for reading and writing F5 files have to be implemented
especially for each supported type. All other functions work with any type. The
type of the template is automatically detected and the according read or write
routines are called. It is also stored as a std::string data_type.

At the moment the only generic type that is fully supported is the float type.
The user is informed if he tries to use an unsupported type. Other types can be
added with minimal effort by expanding the open and append member functions
and adjusting the iterators.

The class supports field the field types scalar, vector and metric33. This has
to be specified by an according std::string “scalar”, “vector3” or “metric33” as
first parameter in the constructor. Class members like number of elements or
element names are prepared according to this information.

The members of the class provide the same functionality as the functions
described in the section C and are not further described. Also a similar macro for
enabling index range checking is provided (US_INDEXCHECK).

herr_t USFts_callback(F5Path*slicePath, double time, void *user_data);

herr_t USFgr_callback(F5Path*grid, const char*gridname, void *operator_data);

herr_t USFfd_callback(F5Path*field, const char*fieldname, void *operator_data);

template <typename T>

class UniformSlice

{

private:

double slice;

std::string grid_name;

std::string field_name;

std::string field_type;

std::string data_type;

std::vector<std::string> elements_names;

int elements;

hsize_t dim[3];

F5_vec3_point_t origin;

F5_vec3_float_t delta;

62

std::vector<T> elements_max;

std::vector<T> elements_min;

int datasize;

T*data;

public:

UniformSlice(std::string field_type, std::string grid, std::string field, double

t, int xdim, int ydim, int zdim);

virtual ~UniformSlice();

void printInfo();

void printElement(int x, int y, int z);

void printData();

void minMax();

void set(T a, int e, int x, int y, int z);

T get(int e, int x, int y, int z);

T*getDataPointer();

T& operator[] (int i);

int indexMap(int e, int x, int y, int z);

int validIndex(int e, int x, int y, int z);

void reallocdata(const int x, const int y, const int z);

int open(const char* file, double time, const std::string grid,

 const std::string field);

void append(const std::string file);

std::string getFieldType();

std::string getDataType();

};

63

Conclusion

The thesis introduced the scientific file format hdf5 by presenting its concepts,
giving a practical guide to use the hdf5 C-library and demonstrating a
visualisation of a certain scientific density data-set.

It then introduced the file format F5, which is based on hdf5. The aim of F5,
the mathematical motivation and the concept of data organisation were presented.
A practical part described the C-library F5 and provided a guide to read and write
F5 files.

Finally two specific data structures of tensor based data on uniform grid
were implemented in C and C++, supporting different data field types.

These implementations could further be enhanced and extended, for
example, by supporting more tensor field types (not only scalar, vector and
metric33) or by providing arithmetic functions for element wise addition, or
similar.

 The F5 library itself also has room for further extensions. For example data
types based on doubles or support of additional high level grid structures.
Enhancement of the F5ls or Q5ls to view selected fragments of data contained in
a F5 file would also be a nice extension.

64

Bibliography

[ADC06] Homepage of the Adcirc Development Group, ADCIRC,
http://www.nd.edu/~adcirc/, 2006

[AMI06] Homepage of Mercury Computer Systems Inc., amiraTM,
http://www.amiravis.com/, Berlin, 2006

[BBH06] Benger, W., Bartsch, H., Hege, H.-C., Kitzler, H., Shumilina, A., and
Werner, A, Visualizing Neuronal Structures in the Human Brain
via Diffusion Tensor MRI,
International Journal of Neuroscience 116, 4, pp. 461—514, 2006

[BEN04] Werner Benger, Tensor Field Visualisation via a Fiber Bundle Data
Model, Department of Mathematics and Computer Science, University of
Berlin, 2004

[BP89] David M. Butler and M. H. Pendley, A visualization model based on the
mathematics of fiber bundles, Computers in Physics 3, 1989, no. 5, 45-51

[BRO98] Manfred Broy, Informatik Eine grundlegende Einführung, Band 1,
Springer-Verlag, Berlin Heidelberg New York, 1998

[CAC06] Homepage of Cactus, http://www.cactuscode.org, 2006

[CYG07] Homepage of cygwin project, GNU+CYGNUS+WINDOWS,
http://cygwin.com/, 2007

[FIB06] Homepage of Werner Benger, The Fiber Bundle HDF5 Library,
http://www.fiberbundle.net/, 2006

[GOU03] David A. D. Gould, Complete Maya Programming, Morgan Kaufmann
Publishers, Elsevier Science, 2003

[GSS07] Homepage by René Heinzl, Generic Scientific Simulation Environments,
http://www.gsse.at/start/, Vienna, 2007

[H5D06] Homepages of The HDF Group (THG), DDL in BNF for HDF5,
http://www.hdfgroup.com/HDF5/doc/ddl.html, Champaign, 2006

[H5R06] Homepages of The HDF Group (THG), HDF5: API Specification
Reference Manual,
http://www.hdfgroup.com/HDF5/doc/RM_H5Front.html, Champaign,
2006

[H5U06] Homepages of The HDF Group (THG), HDF5 User's Guide,
http://hdfgroup.com/HDF5/doc/UG/, Champaign, 2006

65

[HDF06] Homepages of The HDF Group (THG), THG Home Page
Information, Support, and Software from The HDF Group,
http://hdfgroup.com, Champaign, 2006

[LRG06] Homepage of the Relativity Group, Department of Physics and
Astronomy, Lusiana State University, http://relativity.phys.lsu.edu/,
Baton Rouge, 2007

[MAY07] Homepage of Autodesk Inc., Autodesk® Maya®,
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7663079,
San Rafael, 2007

[MEM07] Homepage of Werner Benger, Metamake or Make++ or MCS,
http://www.photon.at/make/, 2007

[MEN07] Homepage of Mental Images Inc., mental images,
http://www.mentalimages.com, Berlin, 2007

[MM506] Homepage of MM5, MM5 Community Model,
http://www.mmm.ucar.edu/mm5/, UCAR, Boulder, 2006

[MVS05] Homepage of Microsoft Coorparation,
http://msdn2.microsoft.com/en-us/library/ms950416.aspx, Redmond,
2007

[RAR07] Homepage of win.rar GmbH, http://www.win-rar.com/, Bremen, 2007

[STR97] B. Stroustrup, The C++ Programming Language (3rd edition),
Addison Wesley Longman, Reading MA, 1997

[SZIP07] Homepage of The HDF Group (THG), Szip Compression in HDF
 Products, http://hdfgroup.com/doc_resource/SZIP/, Champaign, 2006

[TRO07] Homepage of trolltech, TROLLTECH, http://www.trolltech.com,
Redwood City, 2007

[ZLIB05] Homepage of Greg Roelofs, Jean-loup Gailly and Mark Adler,
http://www.zlib.net/, 2005

66

	Introduction
	Hierarchical Data Format (HDF)
	Key Features of the HDF5 library
	Concept of Data Organisation
	The HDF5 Library
	Working with HDF5
	Installation HDF5 for cygwin and Linux
	Install hdf5 for MS Visual Studio®
	Using the Binary Tools
	The command H5ls
	H5dump

	Writing, Reading and Debugging Data using HDF5
	Storing a simple data-set
	Reading a simple dataset
	Creating Groups, Attributes, Comments and Links
	Reading Groups, Comments, Attributes and Links
	Maya Plug-In HDF5_Read_Fluid

	F5
	Fiber
	Fiber Bundles
	F5 File Organisation
	Bundle
	Slice
	Grid
	Topology
	Representation
	Field

	The F5 Library
	Installation of F5 for Linux
	F5ls
	Q5ls
	Important Data Types and Functions
	Basic Data Types:
	ChartDomain_IDs
	F5Path
	Writing F5
	Reading F5

	Example F5 file

	Basic Tensor Type Data Structures in C and C++
	C
	C++

	Conclusion

