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Abstract

The  thesis  describes  the  scientific  data  file  format  F5.  Its  foundation,  the 
Hierarchical  Data  Format  HDF5,  is  described  and  the  concepts  of  F5  are 
presented.  Examples  for  working  with  F5  in  practice  are  presented  and  the 
compilation and installation processes needed to run them are explained. Finally, 
data  structures  and  functions  for  operating  on  basic  tensor  field  types  are 
implemented in C and C++ and a medical data set is read using F5. The text also 
should serve as an introductory guide to HDF5 and F5 for a new user. 

2



Table Of Contents
Introduction........................................................................................................................4

Hierarchical Data Format (HDF).......................................................................................7

Key Features of the HDF5 library.................................................................................8
Concept of Data Organisation.....................................................................................11
The HDF5 Library.......................................................................................................15
Working with HDF5................................................................................................... 15

Installation HDF5 for cygwin and Linux............................................................... 16
Install hdf5 for MS Visual Studio®....................................................................... 17
Using the Binary Tools...........................................................................................20

The command H5ls............................................................................................20
H5dump............................................................................................................. 21

Writing, Reading and Debugging Data using HDF5.................................................. 23
Storing a simple data-set........................................................................................ 23
Reading a simple dataset........................................................................................ 25
Creating Groups, Attributes, Comments and Links............................................... 27
Reading Groups, Comments, Attributes and Links................................................31
Maya Plug-In HDF5_Read_Fluid.......................................................................... 33

F5..................................................................................................................................... 34

Fiber............................................................................................................................ 35
Fiber Bundles.............................................................................................................. 35
F5 File Organisation....................................................................................................38

Bundle.................................................................................................................... 38
Slice........................................................................................................................39
Grid........................................................................................................................ 40
Topology................................................................................................................ 40
Representation........................................................................................................42
Field .......................................................................................................................44

The F5 Library............................................................................................................ 45
Installation of F5 for Linux.................................................................................... 46
F5ls.........................................................................................................................46
Q5ls........................................................................................................................ 47
Important Data Types and Functions..................................................................... 48

Basic Data Types:.............................................................................................. 48
ChartDomain_IDs..............................................................................................49
F5Path................................................................................................................50
Writing F5......................................................................................................... 50
Reading F5.........................................................................................................51

Example F5 file...........................................................................................................56
Basic Tensor Type Data Structures in C and C++...........................................................58

C..................................................................................................................................58
C++............................................................................................................................. 61

Conclusion....................................................................................................................... 64

3



Introduction

Carrying out  research  has  become nearly impossible  without  intensive  use  of 
computers, their computational power today is of great help to many different 
fields.  Two  very  important  fields  are  data  processing  and  data  visualisation, 
which have many applications, for example in engineering, the medical and life 
sciences, physics, astronomy and meteorology. 

Theoretical models of processes are created while studying the world around 
us.  These  mathematical  models  often  become that  complicated  that  analytical 
investigations  are  impossible,  leaving  only  numerical  methods  to  study  the 
equations. This limits the kind of data one can work on to numerical data.

Also measuring physical properties with digital instruments and recording 
the data digitally results in numerical data. 

Artificially created or measured data can be processed further, for example 
with  algorithms  that,  among  many other  operations,  filter,  convert,  segment, 
transform,  compress  or  resample  the  data  to  highlight  certain  properties,  like 
using a magnifying glass. 

Visualisation of the data then is the subsequent result as it serves as a very 
powerful  method  to  understand  or  read  the  data,  particularly  when  huge 
numerical  data  sets  have to  be  analysed.  An image created  from this  data  is 
another representation of this data,  but with the great  advantage that  the data 
immediately becomes 'readable' for us at a glance. Just imagine the difference 
between a x-ray film and a spelled out list of grey value levels. Visualisation is 
also indispensable for communicating the findings or for presenting complicated 
contexts to an audience. 

The software applications that are used by the scientific community share 
one common need:  They need to  access  the  data  they should  operate  on.  At 
present time the applied software often uses non standardised data formats for the 
external  representation. This use of  proprietary data formats greatly limits the 
possibility to interchange data between packages and,  therefore,  also between 
research  groups  or  projects.  Groups  wishing  to  work  together  first  have  to 
overcome the problem of differing data formats to be able to work on the same 
data. This is time consuming and sometimes even nearly impossible if the format 
is not documented, as it is the case for many proprietary formats.
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The data has to be represented internally in an application and externally on 
a physical storage device. Achieving optimal computational performance is the 
main  goal  for  the  internal  memory  representation.  Whereas  the  external 
representation should allow easy interchangeability and be as self-explanatory as 
possible but also allow compact storage and fast read and write access. 

From a user's or researcher's point of view the lack of a standard leads to 
numerous  duplication  and  huge  time  investments  in  the  case  data  has  to  be 
shared. As working together more and more becomes important, the wish and 
need for a standardised way to exchange data between software packages and 
groups becomes very important.   

Attempts have been made in the recent time to overcome this problem and to 
offer  a  standardised  way of  storing  and accessing  scientific  data.  This  thesis 
presents the Hierarchical Data Format (HDF) library developed by the National 
Center for Supercomputing Applications [HDF06]. 

“HDF5 is a general purpose library and file format for storing scientific 
data.” [An Introduction to HDF5, 

http://www.hdfgroup.org/HDF5/doc/H5.intro.html, 21.03.2007]

Scientific  data,  as  opposed  to  information  data,  is  data  that  carries  intrinsic 
geometric information, is defined in an n-dimensional base space and is given on 
a specified grid structure. Among the most basic data fields for example, is a 
scalar field that gives one numeric value for every three dimensional space point, 
like a temperature field. It could be given on a uniform grid, which means the 
space  points  are  equally spaced  in  every direction.  Vector  fields  are  another 
example. They associate a vector to every space point. A velocity field describing 
flowing fluids in  three spacial  dimensions is  a  vector  field.  A more complex 
structure is the tensor field, which assigns a multilinear mapping to every point in 
a grid.

To  be  able  to  create  the  technical  implementation  one  needs  further 
information about properties like the needed numerical resolution, data hierarchy, 
as well as precise knowledge of the hardware platforms, because numbers are 
represented differently on different systems. Being able to store meta data is of 
interest, too. These topics have be addressed by creators of general data formats. 

As a user of a format one should not need to know of the technical low level 
implementation.  Ideally,  the  user  only operates  on  the  higher  level  structures 
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without having to invest time to address low level implementation details. In the 
scenario where, for example, data sets should be exchanged it is sufficient if both 
parties make use of one general, widely available format to store and access their 
data. This eases and speeds up the application development, helps in sharing data 
between the groups and leaves the user with more time to concentrate on the 
scientific work.

To provide such a framework is exactly the purpose of the HDF5 library. 
“HDF5  can  store  two  primary  objects:  datasets  and  groups.  A  dataset  is 
essentially a multidimensional array of data elements, and a group is a structure 
for organizing objects in an HDF5 file. Using these two basic objects, one can 
create  and store  almost  any kind of  scientific  data  structure,  such  as  images, 
arrays of vectors, and structured and unstructured grids. You can also mix and 
match them in HDF5 files according to your needs.)” [An Introduction to HDF5, 
http://www.hdfgroup.org/HDF5/doc/H5.intro.html, 21.03.2007]

The first chapter describes and explains the data format HDF concepts and 
details. The NCSA implementation of this format, the HDF5 C-library, is then 
described and some simple and more complex C examples are given.

The second chapter introduces the F5 library which is built on top of HDF5. 
Fiber bundles are introduced, which are the mathematical basis of the F5 data 
concept.  The data  concept  is  presented  and,  finally,  the  F5 library,  including 
installation and use,  is  described,  which includes  documentation of  important 
functions and data structures.

The third chapter demonstrates the use of F5 in an example data structure 
that supports operations on a basic tensor field type. Functions for reading and 
writing to file and getting meta data or finding minimum and maximum values 
are implemented. Two versions of this code are presented, one in C, the other in 
C++, using the generic programming approach.

The thesis ends with a short conclusion.

6



Hierarchical Data Format (HDF)

The Hierarchical  Data Format (Version 5, HDF5) was first released in 2002 by 
the National Centre of Supercomputing of Illinois.

HDF was designed with respect to application in science and engineering. It 
should be able to handle as many differently structured data as possible for data 
storage. This could, for example, be data collected from numerical computations 
given on a multi-grid,  as  well  as  data coming from measurements containing 
additional meta data.

Scientists  use  many  different  programming  languages  and  platforms  to 
develop  and  run  their  tools.  The  developers  of  HDF5  aimed  for  maximal 
compatibility of their library to as many programming languages, platforms and 
development tools as possible. Only then collaboration and data exchange among 
the scientific community can be theoretically made possible. 

Besides data exchange, data archiving is also an important issue. Especially 
reading old data, created and stored by somebody who is not available any more 
is  a  big  problem.  If  no  sufficient  documentation  is  available,  this  is  a  time 
consuming process. After having figured out how the data technically is stored 
also  the  interpretation  of  its  meaning  has  to  be  figured  out,  which  is  either 
difficult or impossible. A standardised format that allows all necessary meta data 
to be added inside the data file itself would be a great advance. 

While supplying such additional functionality and structure, this must not 
have major effects on the performance of read and write operations to the data. If 
using raw binary formats for large data sets is a lot faster, nobody would consider 
replacing his data operations with the library supplied methods.

The  HDF5  group  with  their  development  of  the  HDF5  library  tried  to 
address all these problems and supply the community with a ready to use free 
software implementation of the HDF data format. Easy to install with hooks to 
many  commonly  used  languages  and  compilers  the  library  should  serve  the 
developers of scientific software tools.

The library comes with a set of command line tools. A tool for examining 
the  content  of  a  HDF5  file  and  printing  the  out  the  content  in  ASCII  for 
debugging purposes is included. Also tools for getting general information about 
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the content  of a HDF5 file or comparing two files are supplied. 

The general development aim of the HDF5 developer group was

“To develop, promote, deploy, and support open and  free technologies that  
facilitate  scientific  data exchange,  access,  analysis  archiving and discovery.” 
[taken from the slides of a introductory talk by Mike Folk, manager of the HDF 
Group]

Key Features of the HDF5 library

Data files can be of  “unlimited” size. 

The  size  is  only  limited  by  the  size  of  the  available  physical  storage. 
Limitations, like a maximum file size limits stemming from the use of 32 bit file 
pointers, are dealt with inside the HDF5 library. In this case, for example, the 
HDF5 library can distribute the data between numerous files or disks. Despite of 
the change of the underlying properties like memory architecture or bus widths 
the access method to the data never changes. This also holds true if HDF5 files 
are transported between platforms.

HDF5 data files can have an “unlimited” size of objects stored in them. 

It was diligently paid attention to  portability and extensibility. This also 
ensures that the library can and will be updated and adapted to future systems. 

The  HDF5  library  is  available  for  several  platforms  and  different 
languages.  There  are  distributions  for  C,  C++,  Java  and  Fortran90  and  the 
platforms AIX, UNICOS, FreeBSD, HP-UX, SGI Altix, SGI IRIX, Linux, Mac 
OS  X,  OSF1,  Solaris  and  Windows® MVS6.0  and  2003.net  are  officially 
supported.  This  covers  to  a  great  extend  the  platforms  that  are  used  by the 
scientific community.

The  data  model of  HDF5  is  simple  and  flexible.  Many  other  already 
existing file formats can be mapped to a HDF5 file. An example for this is the 
HDF5 equivalent to the NetCFD1 file, developed by the HDF5 team. 

HDF5 supports  many data  types. Starting  from types  like  DEC-Alpha-
Integer to the IEEE64 bit big endian float type. It is, in addition, also possible to 

1 NetCFD is a file format created by NCAR to store atmospheric research and modelling data.
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create user defined data types, see section Concept of Data Organisation, Data-
types.

Meta information like endianness, size and architecture is always stored for 
a data type, so all information for reading the data is self contained. 

The data types together with a grouping and linking mechanism to organise 
data allows to create an unlimited variety of complex data types.

The design of HDF5 includes an I/O  layer, called virtual file layer (VFL). 
Users can write own I/O drivers to access data directly via network, for example. 

HDF5 allows for separation of meta data and raw data. A HDF5 file can 
be split to in two files one containing only meta data and the other only raw data. 
An application still sees these separated files as one logical HDF5 file. The meta 
data file and the raw file may also be located on different files systems or on 
different computers. The meta data on one system might be optimized for many 
small  I/O accesses  and the  raw data  on different  system could optimized for 
sparse I/O accesses but transporting much data, as a tape based storage device 
would do. Raw data files can also be shared between different meta data files to 
reduce disc space usage, see figure 1 for an example. 

HDF5 is able to compress data for storage. It uses the zlib library [ZLIB05] 
for this purpose, but the user can also provide his own compression or filtering 
methods. These transformations can be inserted into the I/O operations chain. 

Data types can be  converted during HDF5 I/O operations. Data types are 
organised  in  several  classes  and  can  be  converted  inside  the  according  class 
during I/O. For example, types of the class float can be converted to different 
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float types, like the conversion of a 4 byte little endian float to a 6 byte big-endian 
float.

The data array type can be extended, if necessary, in all possible directions 
along all dimensions, see figure 2. The size of a data set must not be known at 
creation time and the data has not to be written at once but can be written in 
smaller blocks.

HDF5 supports sub selection and spatial data transformations during I/O 
operations. This is important when working with large data sets. Complex sub 
selections of data sets can be achieved by union operations.

The transferred selection can be transformed to a different shape. Figure 3 
shows an example, where a sub selection of a 2-dim array is transformed into a 1-
dim one during I/O operation. The number of involved elements must not change, 
of course. 

Additionally,  an element  of  a  data  set  may consist  of  several  other  data 
objects.  Such  an  element  is  then  called  a  compound.  Figure  4a  illustrates  a 
compound consisting of two floats, an array of floats and a second float . This 
compound is an element of the left array in figure 3.

Compound  components  can  also  be  transformed  to  different  compounds 
during I/O. Figure  4b shows a compound after a possible I/O transformation.
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Concept of Data Organisation

A HDF5 data model is a directed graph structure with one root node. It is created 
from the following components: groups, data-sets  and links. Groups and  data-
sets are nodes in the graph.  Links and “contained in” relations are edges.  Files, 
attributes,  data-types  and  data spaces are  additional  components  that  are  not 
related to the graph structure.

● File:

A file serves as the  container for all other hdf5-objects that build up the 
complete data structure. The file holds meta data information and the root 
node, a group object, named the root group “/”. 
The physical file on disk typically has the extension “.h5”.

● Group:

A group is a hdf5-named-object. It consists of a group header containing 
the group name and a list  of attributes and a list  of other hdf5-named-
objects, the elements of this group, in a symbol table. 

A group is similar to a directory entry in a UNIX or a folder in a 
Windows®  file  system, but  may contain  cycles.  A graph as  shown in 
figure 5 is allowed in HDF5 (with A, B, C being groups) but not in a file 
system (with A, B, C being directories respectively).

● Data Set:

A data-set is also a hdf5-named-object. It consists of a header and a data 
array. The header contains the information necessary to read the array and 
meta  data.  This  includes  the  name of  the  data  in  alphanumeric  ASCII 
characters, a list of attributes, the data-type of all the data array elements, 
the data-space of the array (dimensions and sizes) and the layout the data 
is stored in.
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The storage layout describes the ordering of the array elements in memory 
or in the file.

A  contiguous  layout,  for  example,  arranges  one  element  besides 
another, such that one continuous block of data is created. 

Other possible layouts comprise the compact and chunked layout, see 
chapter “II Using HDF5-The Specifics” section “Datasets” in [H5U06].

The data array itself  is  a  rectangular array of  simple or  compound 
data-types up  to  a  dimensionality (rank)  of  32.  This  maximum dimen-
sionality is defined in the HDF5 library. The HDF5 file format theoreti-
cally supports a rank up to the maximum integer value.

● Links

Links are used to share hdf5-named-objects between hdf5-named-objects. 
There are hard and soft links. 

A hard link is an element in a group and must point to an existing 
hdf5-named-object.  “X  is  contained  in  a  group”  is  equivalent  to  “The 
group contains a hard link to X”. Group membership is also implemented 
via hard links. A hdf5-named-object remembers the number of hard links 
pointing to it in a reference counter.

A soft link is an element in a group that holds a pathname to a hdf5-
named-object, which may or may not exist. No reference counter is stored 
for a soft link.

Figure 6 shows a possible structure in a HDF5 file. The root group “/” 
holds  the  two  groups  “/ALPHA”  and  “/BETA”  and  a  data-set 
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“/Main_Data”. “/Main_Data” is shared between the two groups using hard 
links. Each group also contains its own data-set “/Local_Data” and soft 
links to itself and the other group. 

● Data Type:
A data-type is a description of a data element, which forms the building 
blocks of arrays. A data-type can be an atomic data-type, a native data-
type, a compound data-type or a named data-type.

Atomic data  types are data-types that cannot be split further. HDF5 
supports  seven  different  classes  of  atomic  types:  integer,  float,  string, 
bitfield,  time,  opaque and reference. For each of these classes a different 
set of properties is stored.

For example, an atomic type of class integer has the properties size in 
bytes, precision in bits, offset in bits, pad, byte order and signed/unsigned. 
These properties can be read or modified by functions of  the data-type 
interface section.

The list of properties for a float type is size in bytes, precision in bits, 
offset in bits,  pad,  byte order,  sign position,  exponent position,  exponent 
size in bits, exponent sign, exponent bias, mantissa position, mantissa size 
in bits, mantissa sign, mantissa normalization and internal padding.

Properties  of  other  atomic data-types can be  found in  chapter  “II.  
Using HDF5-The Specifics” section “Datatypes” table 1 in [H5U06].

Native  data-types  are  atomic data-types,  which  are  platform 
independent.  These native types should be used by the programmer, as 
HDF5 automatically chooses the best matching atomic data-type for file 
storage according to architecture and platform.

For example, a C  double value should be represented by the native 
data-type  H5T_NATIVE_DOUBLE in the application. When this type is 
written to a file on IA321 platform the HDF5 file contains the data-type 
description  H5T_IEEE_F64LE,  which stands for IEEE float 64 bit little 
endian.  When  the  same  native  type  is  written  to  a  file  on  a  SPARC 
platform the  file  would  contain  a  H5T_IEEE_F64BE,  as  this  platform 
uses big endian floats. 

Compound data-types are collections of data-types. An element of a 
compound data-type can be an atomic data-type or compound data-type. A 
compound data-type is similar to a struct in the C programming language.

1 Intel Architecture, 32-Bit
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Named  data-types  are  hdf5-named-objects.  They  contain  data-type 
information independent of  data-sets.  They stand on their  own and can 
then be referred to by data-sets and attributes. A named data-type can be 
shared among different data-sets or attributes.

● Data Space
One data-space object is required in a data-set or in a attribute. In a data-
set the data-space contains its rank, which is the number of dimensions of 
the  data  array,  the  number  of  elements  in  each  dimension  and  the 
maximum  number  of  elements  in  each  dimension.  The  number  of 
dimensions can be fixed or unlimited. A fixed data-set cannot be extended 
later on.

Besides defining the data-space of a data-set or attribute data-spaces 
are  also  used  during  I/O  operations,  where  they  specify  the  elements 
involved during the operation. Data-spaces can specify sub selections on 
data-sets.  Selections  can  be  (a) contiguous  n-dimensional,  (b) non 
contiguous equally spaced, (c) unions of selections and (d) a list of data-set 
elements, see figure 7.

For example, a  transforming I/O operation takes two data-spaces as 
arguments, the source and the sink data-space for the involved data-sets.  

● Attribute

Attributes  can be  associated  to  groups,  data-set  and  named data-types. 
Attributes provide a way to store additional user defined meta data to an 
object. They consist of a name, a data-space and a data-type. Attributes 
should be used to store small data to the associated objects. No sharing, 
compression, chunking or sub selection  is possible with attributes. They 
aredirectly written into the header of the associated object.
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The HDF5 Library

The HDF5 library predefines basic data types and needed functions and comes 
with binary tools for debugging and manipulation of hdf5 files. It s available for 
C, C++ and FORTAN90 and JAVA.

The predefined functions are organised in the 12 sections: 

Library Functions, Attribute Interface, 
Dataset Interface, Error Interface, 
File Interface, Group Interface, 
Identifier Interface, Property List Interface1, 
Reference Interface, Data-Space Interface, 
Data-Type Interface,  Filters and Compression Interfaces    

Function  naming  convention  is:  “H5”  +  a  letter  of  the  section  the  function 
belongs (printed in bold above)2. 

More than 100 different  basic data-types for different  platforms, memory 
layouts,  bit  depths,  etc.  are  predefined.  See  section  Concept  of  Data 
Organisation, Data-Types for the properties of a data-type. A complete list of all 
predefined data-types can be found in the HDF5 reference, see [H5R06]. 

New  types  also  can  be  created  using  the  functions  of  the  Data-Type 
Interface, which allow to set and get properties of a data-type.  

Working with HDF5

The library can  be  obtained from the  HDF group homepage  [HDF06] in  the 
download  section.  There  is  a  source  distribution  as  well  as  multiple  binary 
distributions.  The  library  has  two  dependencies  to  external  libraries  when 
installed with all features. It uses SZIP [SZIP07] and the ZLIB [ZLIB05] libraries 
for data compression.

1 Property lists are used to pass additional parameters to functions.
2 Exceptions are “H5” for library functions and “H5Z” for filter and compression functions.
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Installation HDF5 for cygwin and Linux

This describes the installation procedure of the HDF5 source library inside the 
MS-Windows® Cygwin [CYG07] environment.  Cygwin is  a portability library 
and frame work that  adds full  POSIX standard compliance to MS-Windows®. 
The HDF5 source installation is done analogously in Linux.

The  described  process  follows  mainly  the  instructions  given  in 
http://www.hdfgroup.org/windows/INSTALL_Cygwin.txt.

The  source  distribution  of  hdf5  can  be  downloaded  at  the  homepage 
http://www.hdfgroup.com/HDF5/release/obtain5.html.  For  example  the  newest 
version  1.8.0.  The  file  hdf5-1.8.0-alpha5.tar.gz  can  be  uncompressed  and 
unpacked using the command, for example into the /tmp directory.

tar xfz hdf5-1.8.0.tar.gz

 The LZIP library should have been installed by the installer of cygwin for the 
standard installation. If the lzip library is missing the the setup of cygwin should 
be used to add it, or it can be obtained in the hdf5 download section.

Next  step  is  to  get  and  compile  the  szip  library  [SZIP07].  A  binary 
distribution (szip_cygwin_encoder.zip) for cygwin can be found at [http:// www. 
.hdfgroup.com/HDF5/release//obtain5.html, 2007].

If the hdf5 library should be installed for a local user, place all libraries in 
sub directories of the users's home directory. If it should be installed globally then 
the libraries should be put under the /opt directory.

Now  the  installation  of  hdf5  can  be  configured,  for  example  by  the 
following command executed in /tmp/hdf5. 

./configure --with-szlib=~/hdf5/szip --prefix=~/hdf5/hdf5 –enable-cxx

 This installs the library into the user's home directory specified by the flag --
prefix. The flag  -enable-cxx enables support for c++. By default c is supported 
only.

After  the  installation  was  configured  the  library  can  be  compiled  by 
executing make in the /tmp/hdf5 directory and the compilation can be tested. 

./make

./make check

16



If the self test procedures were successful one can proceed to the final installation 
process.

./make install

This copies the libraries, binaries, header files and documentation to the directory 
given under the –prefix  option. The directory containing the hdf5 binary files 
should be added to your PATH environment. In case of a local user installation 
the following line should be added to the .bashrc file in the home directory. 

export PATH=$PATH:~/hdf5/hdf5/bin

For a global installation add the according line at the end of your system wide 
/etc/profile. 

To  test  the  library compile  one  of  the  example  files  using  the  compile 
command script of hdf5, see section Using the Binary Tools.

h5cc -O3 -o h5_write /tmp/hdf5/hdf5-1.8.0-alpha5/examples/h5_write.c

After execution of h5_write the hdf5 file SDS.h5 should have been created  in the 
local directory. Its content can then be examined by h5ls, see section H5ls.

h5ls -rv SHS.h5

If this works successfully then the hdf5 library is ready to  use.

Install hdf5 for MS Visual Studio®

This  describes  how  to  install  the  HDF5  library  for  Microsoft's  Software 
Development platform Microsoft Visual Studio® 2005 [MVS05]

The hdf5 binary distribution for the windows® compilers MSVC++ 6.0 and .NET 
2003 can be found at ftp://ftp.hdfgroup.org/HDF5/current/bin/windows/, it is also 
compatible with the newer Visual Studio® 2005 [MVS05]. 

Get the binary distributions of szip [SZIP] and zlib [ZLIB05] for windows 
following the instructions here:
http://www.hdfgroup.com/HDF5/release/obtain5.html.

The archives contain header files, static and shared libraries. The archives 
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can be  extracted,  for  example,  using the tool  winrar  [RAR07]  and should be 
placed  into  folders  like  c:\hdf5\5-165-win-net,  c:\hdf5\szip20-win-xp-enc  and 
c:\hdf5\zlib122-windows. The folder c:\hdf5\5-165-win-net\bin can then be added 
to the PATH environment variable, by executing the sequence:

My Computer > Properties > Advanced > Environment Variables

The delimiter “;” separates between several paths. Commands like h5ls can then 
be executed from any directory in the windows command prompt. 

A new project in Visual Studio® can be created and configured. The search 
paths  that  contain  the  header  files  have  to  be  set.  In  our  example  the  three 
directories  c:\hdf5\5-165-win-net\include,  c:\hdf5\szip20-win-xp-enc\include and 
c:\hdf5\zlib122-windows\include have  to  be  added  to  the  include  path  list  of 
Visual Studio®, see figure 8.

The same has to be done for shared library search paths. The library paths 
c:\hdf5\5-165-win-net\lib,  c:\hdf5\szip20-win-xp-enc\lib and  c:\hdf5\zlib122-
windows\lib must be added to the “Additional Library Directories”, according to 
figure 9.

The  libraries  must  then  be  specification  as  additional  dependencies  as 
illustrated in figure 10.

If the binary was dynamically linked, the shared libraries must be available 
to the application at runtime. When executing your application windows® will 
typically search for a dll in the following directories: 
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“

1. The directory from which the application loaded. 

2. The system directory. Use the GetSystemDirectory function to get the path 
of this directory. 

3. The 16-bit system directory. There is no function that obtains the path of 
this directory, but it is searched. 

4. The Windows directory. Use the GetWindowsDirectory function to get the 
path of this directory. 

5. The current directory. 

6. The directories that are listed in the PATH environment variable. Note that 
this does not include the per-application path specified by the App Paths 
registry key. 

“ [http://msdn2.microsoft.com/en-us/library/ms682586.aspx]

According to point 6 the folders containing the dlls should be added to your 
PATH environment variable. They then are available to all applications in your 
system, whether it is a stand alone console application or a shared library dll by 
itself.
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Using the Binary Tools

HDF5 provides many command line tools for viewing, analysing, manipulating 
and testing  existing HDF5 files.  These  commands are  placed in  the  hdf5/bin 
directory. A complete documentation of the tools can be found at  [H5R06].

Very useful tools for developing command line programs in Linux or within 
cygwin/windows are h5cc and h5c++. If these command are used for compilation 
and  call  the  compiler  specified  during  hdf5  installation.  They  add  all  hdf5 
relevant compiler options and library and include paths.

 The two commands h5ls and h5dump produce human readable output and 
are a valuable debugging tool during development. 

The command H5ls

H5ls lists the content of an HDF5 file in different levels of detail. The command 
without additional parameters prints all hdf5 objects inside the root group. To see 
all objects and their types invoke h5ls -r (-r, for a recursive), which results in an 
ASCII output of the following format:

/GroupName/GroupName/.../GroupName/ObjectName ObjectType 

A partial example of the output of h5ls with recursive call option is listed below:

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D Group
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/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/DTI_tensor Dataset

{56, 128, 128}

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/Positions Group

...

/TableOfContents/TypeInfo Type

The level of detail can be increased by adding the command line option -v, which 
stands for verbose. This also shows the elements and data types of all objects, but 
no data values of the data-sets. The complete description of all options is shown 
with h5ls --help.

H5dump

H5dump dumps the entire content of a HDF5 file as ASCII1 text  to the standard 
output stream, which normally is directed to the terminal. When a lot of text is 
displayed  the standard output stream should be piped into a file, that can then be 
displayed and browsed with a text viewer or editor.

h5dump test.h5>test.txt (UNIX)

This command redirects the standard output stream of h5dump into a new file 
test.txt, which can then be displayed using less:

less test.txt (The less command is available on most UNIX systems)

Files of large data sets can become really big when doing this. Here is an excerpt 
of how an ASCII dump looks like: 

...

   GROUP "T=0.1" {

      ATTRIBUTE "Time" {

         DATATYPE  H5T_IEEE_F64LE

         DATASPACE  SCALAR

         DATA {

         (0): 0.1

         }

...

This  example  shows  the  beginning  of  a  group  block  and  the  content  of  an 
attribute. The attribute “Time” contains one scalar float, which holds the number 
0.1 as data value.

Objects are defined through keywords and limited by curled brackets. The 

1 American Standard Code for Information Interchange 
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full grammar is defined in an data description language, see [DDL07], which is 
given in BNF1-notation, see [BRO98].  H5dump transcribes to complete content 
of the h5 file. To get a more compact view use h5ls instead.

 

1 Backus Naur Form
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Writing, Reading and Debugging Data using HDF5

Storing a simple data-set

This example demonstrates how to store a one dimensional array of type double 
to a HDF5 file using C. All steps to arrive at a working example are demonstrated 
and necessary information is provided where it is necessary. 

Programs that  want  to  access  hdf5  functions  need to  include  the  hdf5.h 
header file. HDF5 identifies objects through an identifier, which is of type hid_t. 
Each access to a file, a group, a data-set or a data-type will involve such a type. 

To create a data-set several hdf5 objects are necessary. Several hid_t objects 
need to be declared at  the beginning of  the main scope,  as  well  as  a  hsize_t 
datadim[1], used for setting the data-set dimensions, and a herr_t status for error 
checking. The one dimensional array of  double values will be accessed via the 
pointer ddata.

hid_t file, dataset, datatype, dataspace;

hsize_t datadim[1];

herr_t status;

double*ddata;

Functions  that  return  hid_t  return  a  value  smaller  zero  in  case  of  an  error. 
Functions that return herr_t also return a value smaller zero in case of an error. If 
an error occurs hdf5 puts an error message onto its error stack. This stack can be 
printed into a stream.

H5Eprint(stdout)  

H5Eprint() returns a herr_t and prints the hdf5 error stack into a stream specified 
by a pointer FILE*.

After space for the array  ddata was allocated and after it was filled with 
numbers a HDF5 file is created.  

file = H5Fcreate("write_00.h5", H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

H5Fcreate() returns  a  valid  hid_t  if  it  successfully  creates  a  file.  The  first 
parameter is the path and file name, the second a flag that defines the behaviour, 
when  a  file  with  the  same  name  is  already  existent.  With  the  flag 
H5F_ACC_TRUNC H5Fcreate() will  overwrite all  data in an already existing 
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file.  The third and fourth parameters  are  a  hid_t to  a  property list  specifying 
creation and access modes, which are here set to default by H5P_DEFAULT.

Next, data-space and data-type of the data-set are prepared. Our data-set is 
an array of double values with n elements.

datadim[0] = n;

dataspace = H5Screate_simple(1, datadim, NULL);

datatype = H5Tcopy(H5T_NATIVE_DOUBLE);

H5Screate_simple() returns a hid_t for a created data-space. It takes the rank of 
an array, an array of the sizes of each dimension and an array of the maximum 
sizes for each dimension. The third parameter may be NULL, then the maximum 
size is equal to the size specified with the second parameter.

H5Tcopy() returns  a  hid_t for  a  data-type  of  a  type  specified  by  the 
parameter. The created data-space and data-type can now be used to create an 
empty data-set.

dataset = H5Dcreate(file,"array_of_doubles", datatype, dataspace, H5P_DEFAULT);

With H5Dcreate() a data-set is created and a hid_t is returned. The first parameter 
hid_t describes the location in the file. It can be the file id or a group id. The 
second parameter, of type const char*, is the name of the created data-set. The 
third and fourth parameter specify the data-type and data-space of the data-set. 
The last parameter can be used to pass a property list,  which allows set more 
options, like storage layout, compression or external storage.    

Next, the empty data-set can be filled and written to the storage device.

status = H5Dwrite(dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, 

H5P_DEFAULT, doubledata);

H5Dwrite() writes data into a given dataset and returns an error status herr_t. The 
first  parameter  hid_t specifies  the  data-set  that  will  be  filled  with  data.  The 
second parameter  hid_t passes the memory type of the data elements of the set. 
The third and fourth hid_it are data-spaces that can be used to write only parts of 
the data-sets. If both are set to H5S_ALL the complete data-set is written. Again, 
additional options can be passed by property lists, here using the fifth parameter. 
Finally, the last parameter specifies a pointer of type void* to the array holding 
the data.   

The function calls listed above opened a data-space, a data-type, a data-set 
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and a file. These objects should be closed by the according functions. 

H5Sclose(dataspace);

H5Tclose(datatype);

H5Dclose(dataset);

H5Fclose(file);

The c-file can be compiled, for example, by using the h5cc command.

h5cc -o write_00 -O3 write_00.c

Executing write_00 creates the file write_00.h5 in the local directory, which can 
be examined by h5ls and h5dump:

Reading a simple dataset

The lines of code provide an example to read the data-set created in the first 
example. Since similar hdf5 objects are necessary as above the declaration block 
is omitted here.

 file = H5Fopen("write_00.h5", H5F_ACC_RDONLY, H5P_DEFAULT);

H5Fopen() returns a hid_t of a opened file. The first parameter specifies the file 
system path and the file name as a const char*. The access mode is described by 
the  second parameter.  This  includes  read  only,  write  only or  read  and write. 
Additional  options  that  can  be  passed  via  a  property  list  are  buffered  I/O, 
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$ h5ls -rv write_00.h5

Opened "write_00.h5" with sec2 driver.

/array_of_doubles         Dataset {5/5}

    Location:  1:792

    Links:     1

    Modified:  2007-03-18 16:30:17 WEST

    Storage:   40 logical bytes, 40 allocated

         bytes, 100.00% utilization

    Type:      native double

$ h5dump write_00.h5

HDF5 "write_00.h5" {

GROUP "/" {

   DATASET "random doubles" {

      DATATYPE  H5T_IEEE_F64LE

      DATASPACE  SIMPLE { ( 5 ) / 

( 5 ) }

      DATA {

      (0): 0, 6.90001, 5.05418, 

      (3): 5.91491, 5.54785

      }

   }

}

}



unbuffered I/O or parallel file I/O using MPI.

Hdf5 objects inside the file can now be opened.

dataset = H5Dopen(file, "random doubles"); 

H5Dopen() returns  a  hid_t of  a  data-set.  It  opens  the  data-set  specified  by a 
location (hid_t) and the name of a data-set. The location may be a file or a group 
id.  The name of a data-set can, for example, be retrieved by using  h5ls. Also, 
other mechanisms to open a data-set without knowing its specific name exist, see 
section Reading Groups, Comments, Attributes and Links.

Size and data type of a data-set have to be extracted before it can be read.

datatype = H5Dget_type(dataset);

datasize = H5Tget_size(datatype);

With  H5Dget_type() we  get  a  hid_t of  a  data-type  of  a  specified  data-set. 
H5Tget_size() returns the size_t of a data-type in bytes.

Also the dimensions (rank) of the hdf5 array have to be determined, what is 
done via a data-space.

dataspace = H5Dget_space(dataset); 

rank = H5Sget_simple_extent_ndims(dataspace);

status  = H5Sget_simple_extent_dims(dataspace, datadim, NULL);

H5Dget_space() returns a hid_t of a data-space of a data-set. From the data-
space the rank and the number of elements in each dimension can the obtained 
using  H5Sget_simple_extent_ndims(),  which  returns  the  rank  as  an  int,  and 
H5Sget_simple_extent_dims(),  which  returns  the  number  of  elements  and  the 
maximum number of elements via two hsize_t pointers. In our case the maximum 
number is not needed. So, the last parameter is set to NULL.

The data collected above can be used to allocate memory for the data array.

doubledata = (double*)malloc( datadim[0] * datasize );

And data is read from the data-set.

H5Dread(dataset, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, doubledata );

H5Dread() returns a herr_t and reads a data block from an opened data-set 
into an array. The parameters  specify the  data-set,  the  data-type, the memory 
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data-space, the file data-space, a property list and the array (void*). The two data-
spaces can be used to read sub selections of the data-set.

H5Tclose(datatype);

H5Dclose(dataset);

H5Sclose(dataspace);

H5Fclose(file);

Finally, the opened HDF5 objects have to be closed.

Creating Groups, Attributes, Comments and Links

In this example a hdf5 structure as shown earlier in figure 6 is created. Besides 
groups, data-sets and links some additional attributes and comments are created 
and assigned to some of the hdf5-named-objects.

First the data-set called “Main_Data” contained in the root group of the hdf5 
file is created and a comment is associated.

dataset = H5Dcreate(file, "Main_Data", datatype, dataspace, H5P_DEFAULT);

H5Gset_comment(dataset, ".", "Measured by Arno Arnold");

H5Gset_comment() returns  a  herr_t.  The  first  parameter  hid_t specifies  the 
location and the second parameter the name of  the object that  should get the 
comment. The last two parameters must be given as const char* string. 

The name is a path in the hdf5 file. A path has a similar syntax to file system 
paths  in  UNIX,  for  example:  “/groupA/datasetA”.  A  path  is  absolute,  when 
starting with “/” and relative otherwise. If  its relative then it is relative to the 
location specified by the first parameter (a hid_t). The “.” is a relative path to the 
current location. 

The following two H5Gset_commt() calls are equivalent to the one above.

H5Gset_comment(file, "Main_Data/", "Measured by Arno Arnold"); 

H5Gset_comment(dataset, "/Main_Data/", "Measured by Arno Arnold");

Next an attribute is created and associated with the data-set “/Main_Data”.

datadim[0] = 1;

dataspaceA = H5Screate_simple(1, datadim, NULL);

datatypeA = H5Tcopy(H5T_NATIVE_DOUBLE);

Here data-space and data-type have been prepared for the attribute.
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attrib = H5Acreate(dataset, "offset", datatypeA, dataspaceA, H5P_DEFAULT );

H5Awrite(attrib, datatypeA, &attr_val );

H5Acreate() returns a hid_t for an attribute. The parameters are location, name, 
data-type, data-space, and a property list. After the attribute was created a number 
can be stored inside.

H5Awrite() returns a  herr_t and takes, the id of the attribute, its data-type 
and a pointer to the attribute value.

H5Sclose(dataspaceA);

H5Tclose(datatypeA);

H5Aclose(attrib);

Again involved object have to be closed.

Next, the two groups “/ALPHA” and “/BETA” are created. 

group = H5Gcreate(file, "/ALPHA", 0);

H5Gcreate()  returns a hid_t of the created group and takes a location, a path and 
a size_t. This size is used by hdf5 to allocate memory in bytes for names that will 
be stored in the group header. This parameter is optional and can be set to zero, 
since dynamic resizing is supported. It is faster to pre define the sizes, though.

After a group was created it remains open and members of the group can be 
created. Assume that a data-set called “Local_Data” is stored inside the group. 
Afterwards the group must be closed:

H5Gclose(group);

Creation of the second group “/BETA“ and its local data-set is done analogously. 

The links in the hdf55 file have to be created:

H5Glink(file, H5G_LINK_HARD, "/Main_Data", "/BETA/Main_Data");

H5Glink(file, H5G_LINK_HARD, "/Main_Data", "/ALPHA/Main_Data");

HSGlink() returns  herr_t  and creates a link at  a given position and path.  The 
second parameter specifies if the link is hard or soft. The link points to the path 
specified by the third parameter.  The fourth parameter is the path of  the link 
itself.

 In the example above, links inside the groups “/BETA” and “/ALPHA” 
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called “Main_Data” point to the data-set “Main_Data” in the root group. Thus, 
Main_Data is shared between both groups because the hard link behaves like a 
real data-set, when being accessed.

H5Glink(file, H5G_LINK_SOFT, "/ALPHA", "/BETA/next");

H5Glink(file, H5G_LINK_SOFT, "/BETA", "/BETA/previous");

H5Glink(file, H5G_LINK_SOFT, "/ALPHA", "/ALPHA/next");

H5Glink(file, H5G_LINK_SOFT, "/BETA", "/ALPHA/previous");

The same function is used to create soft links, which point to the groups itself and 
the  other  group.  They can  now be  used  to  access  the  so  called  “next”  and 
“previous” object of this data structure. 

Examining the written file by  h5ls -r gives a overview over the structure, 
compare figure 6:

$ h5ls -r write_03.h5

/ALPHA Group

/ALPHA/Local_Data Dataset {3}

/ALPHA/Main_Data Dataset {3}

/ALPHA/next -> /ALPHA

/ALPHA/previous -> /BETA

/BETA Group

/BETA/Local_Data Dataset {3}

/BETA/Main_Data Dataset, same as /ALPHA/Main_Data

/BETA/next -> /ALPHA

/BETA/previous -> /BETA

/Main_Data Dataset, same as /ALPHA/Main_Data
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 h5dump shows the complete structure: 
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$ h5dump write_03.h5

HDF5 "write_03.h5" {

GROUP "/" {

   GROUP "ALPHA" {

      COMMENT "Ordinary Node"

      DATASET "Local_Data" {

         DATATYPE  H5T_IEEE_F64LE

         DATASPACE  SIMPLE { ( 5 ) /

  ( 5  ) }

         DATA {

         (0): 1, 62.4102, 36.6531,

   47.8159, 42.8743

         }

      }

      DATASET "Main_Data" {

      COMMENT "Measured by Arno 

Arnold"

         DATATYPE  H5T_IEEE_F64LE

         DATASPACE  SIMPLE { ( 5 ) /

  ( 5 ) }

         DATA {

         (0): 1, 7.90001, 6.05418,

      6.91491, 6.54785

         }

         ATTRIBUTE "offset" {

            DATATYPE  H5T_IEEE_F64LE

            DATASPACE  SIMPLE { ( 1 ) /

     ( 1 ) }

            DATA {

            (0): 3.6

            }

         }

      }

      SOFTLINK "next" {

         LINKTARGET "/ALPHA"

      }

      SOFTLINK "previous" {

         LINKTARGET "/BETA"

      }  LINKTARGET "/ALPHA"

   }  }

   GROUP "BETA" {revious" {

      COMMENT "Ordinary Node"

      DATASET "Local_Data" {

         DATATYPE  H5T_IEEE_F64LE

         DATASPACE  SIMPLE { ( 5 ) /

  ( 5 ) }

         DATA {"/ALPHA/Main_Data"

         (0): 2, 2, 2, 2, 2

         }

      }

      DATASET "Main_Data" {

         HARDLINK "/ALPHA/Main_Data"

      }

      SOFTLINK "next" {

         LINKTARGET "/ALPHA"

      }

      SOFTLINK "previous" {

         LINKTARGET "/BETA"

      }

   }

   DATASET "Main_Data" {

      HARDLINK "/ALPHA/Main_Data"

   }

}

}



Reading Groups, Comments, Attributes and Links

This example shows how to open groups, get comments, get attributes and how to 
iterate over hdf5-named-objects in the HDF5 file.

group = H5Gopen(file, "/ALPHA" );

H5Gopen() returns a  hid_t of  the open group. Many operation do not need a 
group to be open. But some functions only take a location hid_t  of a opened hdf5 
object and so the it has to be opened in before, for example: 

H5Gget_num_objs(group, &objnum);

H5Gget_num_objs() returns herr_t. It returns the number of hdf5-named-objects 
contained in the group into a pointer hsize_t* (second parameter). 

Names and data-types of  group elements can now be extracted using an 
index.

for(j = 0; j < objnum; j++) 

{

H5Gget_objname_by_idx(group, j, buffer, 512 );

t = H5Gget_objtype_by_idx(group, j ); 

printf("Object %d: %s type %d\n", (int)j, buffer, t);

}

H5Gget_objname_by_idx() returns herr_t and the name third parameter (char *). 
The second parameter  is  an index (of  type  hsize_t)  and  the  fourth  parameter 
passes the size of the buffer. The index is transient, what means that the index is 
only valid in the currently open group and can be different if the same group is 
opened again later. 

H5Gget_objtype_by_idx() returns an  int for the type of the hdf5 object at 
specified the group and index. Type number 0 stands for a soft link, 1 for a group, 
2 for a data-set and 3 for a named data-type.

  Another  way  to  iterate  through  members  of  a  group  makes  use  of  the 
H5Giterate() function. The group need not be open in before in that case.

H5Giterate(file, "/", NULL, file_info, NULL); 

H5Giterate() returns an int, which is the return value of the function specified by 
the  fourth  parameter.  It  returns  0  if  all  elements  of  the  group  have  been 

31



processed.   The function iterates over  all  members  of  the  group specified  by 
location id and path. The third parameter int* is a pointer to an index where the 
iteration starts from. If it is set to  NULL then the iteration starts with the first 
element of the group. The fourth parameter is a function pointer of a function that 
is called during iteration. Information can be passed to the function by using the 
fifth parameter, a void* pointer. See [H5R06] for more information.

Comments  that  have  been  associated  to  hdf5  object  can  be  read  by the 
following function.

H5Gget_comment(file, "/Main_Data", 512, buffer );

H5Gget_comment returns  herr_t  and reads the associated comment of a hdf5-
named-object  specified by id and path into the  char* string buffer.  The third 
parameter passes the size of the buffer.

An attribute has to be opened before its value can be read. Similar to the 
group functions attributes can be identified by name or by index. Functions to get 
the number of attributes and for iteration are provided also, functions to get the 
attribute´s data-space and data-type.

attrib = H5Aopen_name(dataset, "offset" );  

H5Aread(attrib, H5T_NATIVE_DOUBLE, &offset );

H5Aread() returns herr_t and reads the attribute of type hid_t at a void*. In this 
example into a double offset.
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Maya Plug-In HDF5_Read_Fluid

A  plug-in  for  the  3D  application  Maya® [MAY07]  was  developed  under 
Windows® using Visual Studio® 2005. It demonstrates the previously discussed 
functionality of HDF5.

The Maya® command plug-in reads a three dimensional density distribution 
from a HDF5 file into a Maya container for volume data. Before executing the 
command a Maya scene has to be prepared and must contain a volume container. 
The command implemented added by the plug-in must be executed while the 
container is the selected object in the 3D scene.

A Maya® fluid  container  allows  usage  of  colour  maps  and  to  scale  the 
visualised density dependent on the density value of the underlying scalar field. 
Figure 11 shows a rendered images of a density distribution, which was provided 
by the relativity group of the Lusiana State University [LRG06]. The visualised 
density was scaled so that certain values of the density distribution form volume 
slices. They create a visual effect that is similar to displaying transparent iso-
surfaces. Maya® produces smooth interpolated results with according high quality 
settings given the discrete data field with a resolution of 50x50x50 points. The 
images have been rendered with the rendering engine Mental Ray® [MEN07].

For a detailed description of Maya® plug-in programming see [GOU03]. 
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Figure 11: Visualisation of a 3D density distribution 



F5

HDF5  provides  efficient  mechanisms  for  storing  multidimensional  arrays 
together with properties but it does not store additional information on the data 
like:  “what  is  it”  in  any form.  No information that  would identify and allow 
correct interpretation of the contained data is added to the hdf5-file automatically. 
The F5 library tries to address this problem for the case of scientific data and 
offers a mechanisms to store the contextual information together with the data 
itself. HDF5 grouping, attributes and comments are used for this purpose.

F5 allows to formulate general concepts like a field, in a way that the data 
can  be  identified  as  representing  a  specific  field,  for  example  a  vector  field. 
Additional information that is needed for correct interpretation of the data, like 
the spacial distribution of the points a field is given on, is either stored in hdf5 
data-sets or by making use of the hierarchical structures available from hdf5. All 
mechanisms to access subsets of data are mapped to the same efficient methods 
that are found in hdf5. In addition, the overhead for working through the F5 API1 
is kept minimal so there is nearly no performance penalty when using the F5 
library. A C version of this API is available.

The broader aim of the F5 is to offer a complete data model for applications 
that  operate  on  scientific  data.  It  aims  to  avoid  the  need  of  repeated  re-
implementation  of  data  file  reader  and  writer  code.  F5  offers  a  sufficiently 
complete way to operate on, save and load scientific data on a high user level .

The  concept,  F5  was  developed  after,  is  based  on  the  concept  of  fiber 
bundles, see section Fiber Bundles below. The proposition, developed by Butler 
and Pendly [BP89]  that suggests to create a layered structural representation of 
manifolds by repeated aggregation of simpler objects and to apply the abstraction 
provided by the concept of vector bundles is as follows: 

“At the lowest level, both the base and fiber are point sets, just collections of 
points X. For the next layer, the notion of neighbourhoods is added to obtain a 
topological  space T :=X , like  in  def.  1  (see  below).  Then  the  notion  of 
coordinates and differentiability is added to get a manifold  M :=T ,{{x }} , 
like  in  def.  19.  The  fiber  of  interest  here  is  a  vector  space,  which  can  be 
considered as a manifold again, but with an additional layer of structure, i.e. the 
structure  of  linear  algebra  in  the  case  considered  here.  The  next  layer  then 

1 Application Programming Interface
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aggregates the base space B and the fiber F into a bundle  (B, F).  Finally the 
bundle is aggregated with a map, which allows to specify values in each fiber to 
yield a section.”  [BEN04, 2.2.2 p39]. 

Fiber

Building on this pioneering idea the fiber bundle data model was developed by 
W. Benger [BEN04]. It allows the abstraction of the geometrical description of 
spacial  objects  from  their  numerical  representation  in  a  specific  coordinate 
system  and it offers an abstraction for the physical computation domain for the 
underlying discretisation scheme.  It  also allows to formulate  grid-independent 
algorithms. It was implemented in C++ and makes use of generic programming 
techniques. 

Fiber Bundles

Fiber bundles are introduced on the basis of several definitions. The definitions 
shown here are mainly taken from [BEN04]. Note, that this information is not 
necessary to work with F5, but explains the background and motivation of the 
data organisation.

(Def. 0)

Let S be a set. Then PS  is the set of all subsets of S , called the power set of S.

Example:

S={1,2,3 }, PS ={∅ ,{1}, {2 }, {3} ,{1,2}, {1,3 }, {2,3}, {1,2,3 }}

(Def. 1)

Let X be a set ∧ P X  be the power set. A subset ⊆P X  of the power set
is a topology iff :
1  arbitrary unions of elements of  are contained in  , i.e. if I is an arbitrary
also infinite set of indices a nd ∀ i∈I :U i∈ , thenU

i∈I
U i∈ ,

2 finite intersections of elements of  are contained in  , i.e. if

U 0, U1,. .. , U n∈ then ∩
i=0

n

U i∈with n∈ℕ ,

3  the emtpy set a n d the set X itself are contained ∈ ,i.e. ∅ , X ∈
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(Def. 2)

The pair X , of a set X together with a topology  on this set is a
tolopogical space. The elements of a topological space are called points.

Examples:

The set S={1,2,3 }with topology ={∅ , {1 }, {1,2,3 }} is a topological space.

The set S with topology ={∅ ,{1}, {2 }, {1,2,3}}is not a topological space , since
the union {1,2 } is not contained in 

ℝ with the set of open intervals ={U
i
ai , bi:a i , bi∈ℝ , a ibi } is known as the

standard topology onℝ .

(Def. 5)

A subset A⊆X of a topological space  X , is a neighbourhood of an element of
p∈X iff it contains an element O of  that contains p :
A⊆X   p⇔∃O∈ : p∈O ,O⊆A

(Def. 6)

Two topological spaces X ,Y are homeomorphic , if there exists a bijective map
H : X Y such that open sets of X are mapped to open sets in Y a nd vice versa ,
i.e. the neighbourhood relations must be sustained under this mapping.
H is called homeomorphism o r topological map.

(Def. 10)

The cartesian product X ×Y of two topological spaces X ,Y with the respective
neighbourhood sets  x⊂P X  , y ⊂P Y  of the points x∈X , y∈Y
is a topological space , if the neighbourhood sets  x , y  of the
point x , y ∈X ×Y are given by  x , y={U∈x  ,V ∈y :U×V⊂W :W }

(Def. 50)

Let E an d B being topological spaces an d f :E B be a continuous map.
E ,B , f  is called a fiber bundle , if there exists a space F , such that the union of
the inverse image of f of a neighbourhood U b⊂B of each point b∈B is
homeomorph to U b×F :

E , B , f  fiber bundle⇔∃F :∀b∈B :∃U b: f −1U b≃U b×F
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Thus, the space E can be locally be described by the product of a base space B 
(carrier) and a fiber space F. If this property also applies globally in space, E = B 
x F, then this bundle is called a trivial fiber bundle. 

 This separation appears within the fiber data model, where data elements 
are represented as fibers on geometrical entities. For example, a vector field on an 
uniform grid, describing the velocity of a fluid is a scientific data structure that 
can be represented by the data model. The vectors would be the fibers and the 
uniform grid the base space. Here the fiber bundle would even be trivial, because 
the fiber space is the same in each grid point and also the uniform grid is nested 
in one space.

Figure 12 illustrates the general concept of the separation of a data structure 
into base space and fibers, where fibers are shown as “hairs” on a torus (the base 
space). 
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Figure 12: Separation into fibers and base space.
The hairs represent the fibers and the torus 
represents the base space.  



F5 File Organisation

The data structure inside a F5 file is organised in an acyclic graph containing 
a root node. The F5 file stores numerical data in data-sets, which are located at 
the end nodes1, the leaves of the graph. A path through the graph starting from 
the root node to an data-set defines all properties of this data-set.

These properties are separated or grouped in six structuring elements, which 
are ordered hierarchically:

Bundle → Slice → Grid → Topology → Representation → Field.

Figure 13 shows an example F5 data structure. Data-sets are nested at the 
leaves, which are encircled with double lines.

Bundle
Bundle

Usually,  a  F5-bundle contains  some data  within  a  physical  space,  which 
consists of spatial dimensions and one time dimension. Thus, the base space can 
be modelled by a Cartesian product of time  and space:  

bundle base space:ℝ× (Eq. 1)

Since F5 stores discrete data, numerical data is stored at certain points of 
time. All spatial data at an instant of time is grouped into a so called time slice. 

The bundle is a container for slices, which is modelled by the root group in 
the HDF5 file. It is the uppermost element of the F5 data structure.

1 No data field is contained in the root node.
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Figure 13:  Graph of F5 data organisation.



F5-slices are accessed via a float number representing the physical time of 
the according slice. Note, that this is different to many approaches, where integer 
time steps are used.

Besides time slicing one can also use a different float parameter to slice the 
base space of  a  F5-bundle. Such a slice  is  then called a  parameter  slice,  see 
[Fib06, Related Pages, Slice] 

Slice
Bundle/Slice

A  slice represents  a  instant  of  time of  a  bundle.  It  contains  geometrical 
entities of the bundle at that time. Such a geometrical entity of a slice is called a 
grid object.

A F5-slice is modelled as a HDF5-group, that contains F5-grid objects. A 
grid object representing the same geometrical entity in a different time slice has 
the same name in each time slice. So an object can be traced as it evolves in time. 

Figure 14 shows an example of a slice a t=3.5 of a 2D shape evolving over 
time, forming a 3D surface in the bundle. The intersection lines of the slice plane 
and the curved surface represent a grid object in the slice. 
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Figure 14:  Time slice of an evolving 2D shape.



Grid
Bundle/Slice/Grid

A F5-grid object represents a geometrical entity, a manifold, or to be exact, 
a triangulation of a manifold1. 

It is modelled as a HDF5-group with a custom name. It is a member of a F5-
slice and contains an atlas and F5-topology objects.

Data of a grid may be represented by different coordinate systems. All  these 
coordinate systems contained in the grid object are collected in the atlas, which is 
modelled  as  a  HDF5-group  called  “Charts”.  Transformation  rules  between 
compatible coordinate systems are stored there. For example, if the grid contains 
some data represented in Cartesian coordinates and some in polar coordinates the 
atlas would contain transformation matrices between those. 

A  grid  object is  decomposed  in  grid  components,  which  share  certain 
properties and are grouped to F5-topology objects.  A  grid object may contain 
many  different  topologies.  The  information  of  all  grid  components  together 
define the topological properties of a  grid object. The union of all “Positions” 
fields (see section Field) contained in a grid form the base space of the grid.

Topology
Bundle/Slice/Grid/Topology

The  F5-topology  object describes  information  about  the  topology of  the 
spatial elements it contains and their  neighbourhood information. It is modelled 
as  HDF5-group,  containing  a  data-set  called  “Neighbourhood”  and  certain 
attributes.  Data  represented in  certain  coordinate  systems is  grouped into F5-
representations, which are also members of the topology.

The data-set neighbourhood defines which spatial elements are located next 
to a certain spatial element. In the general case, this information is stored as a list 
of indices of neighboured elements for each element. It is stored  procedurally in 
special cases. For example, the indices of the neighbours in a rectangular grid 
layout of spatial elements can be calculated by a given index2.

1 Since F5 deals with discrete data.
2 Neighbours of a 3D spatial element with index (i,j,k):
i , j , k{i1, j1, k , i1, j−1, k , i−1, j1, k ,i−1, j−1,k  ,i , j , k1 , i , j , k−1}
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Spatial elements of a topology are so called  k-cells or collections of   k-cells.
k stands for the dimension of the cell. Figure 15 shows different examples of k-
cells: (a) points are 0-cells, (b) edges are 1-cells, (c) faces are 2-cells and (d) 
cubic volumes are 3-cells.

A spatial element can also be defined based on other spatial elements. For 
example, an edge can be defined by two vertices or a path of connected edges can 
be defined by a number of edges. To describe such 'higher order' structures an 
index depth is introduced. The spatial element that is not based on others has 
index depth 0 and is a point in space called vertex. The index depth represents the 
number of  dereferencing operations to get to the element with index depth 0. 
Thus, an edge has index depth 1 and a path has index depth 2. The table below 
shows different examples. (table taken from [BEN04, table 3.1, page 64]) 

Spatial element Index depth Dimensionality
Vertex 0 0
Edge 1 1
Face 1 2
3-Cell 1 3
Collection of Vertices 1 0
Path of edges 2 1
Surface built from faces 2 2
3-Cell complex 2 3
Set of cell complexes 3 3

Another property stored in the topology is the refinement level of a spatial 
element.  See  figure  16 for  an  example  showing some refinement  levels  of  a 
triangular surface.

Related spatial elements with different refinement levels must be of same 
dimensionality and index depth. They can then be associated to spatial elements 
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Figure 15:  Examples of a 0-cell, a 1-cell, a 2-cell and a 3-cell



of a different topology, with a different refinement level and a different number 
of spatial elements.

 F5-topology objects  are unique in  a  grid object  and are  identified  by a 
string. It holds an arbitrary number of F5-representation layers sharing the same 
coordinate system properties.

F5  provides  4  predefined  topologies,  but  other  topology groups  may be 
defined: “Points”, “Edges”, “Faces” and “Connectivity”:

● Points:
This  is  the  fundamental  topological  subgroup,  because  it  contains  the 
vertex information of a grid.

● Connectivity:
This subgroup contains information about k-cells which construct a grid 
(with k > 0). An example for a connectivity group would be a triangular 
surface where the triangles are build by triples of indices to points of a 
Points topology, see [FIB06, Related Pages, Topology Objects].

Representation
Bundle/Slice/Grid/Topology/Representation

The F5-representation layer holds information about the coordinate systems 
valid in the data fields it contains and is a member of a F5-topology layer. It is a 
HDF5-group named like the representing coordinate system.

A  representation always contains one specific F5-field called “Positions”, 
which stores the positions of the spatial elements of a topology. Furthermore, it 
contains an arbitrary number of F5-fields with custom names, containing data at 
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Figure 16:  Different refinement levels of a triangular surface.



the “Positions”. They have the same spatial dimension as the positions  field. A 
data element of a data field can then be mapped to the according “Positions” of 
the spatial elements.

In a general case “Positions” is a HDF5 data-set of vertices using the same 
indices as the data fields, see figure 17(a). 

In  the  case  of  describing  vertices  in  uniformly distributed  3D Cartesian 
coordinates, only a position at the index (0,0,0) called origin and a vector called 
delta describing  the  vector  between  two  diagonal  positions  is  sufficient,  see 
figure 17(b). A position dependent on the element index can then be calculated 
by: 

Pi , j , k=O i⋅1

j⋅2

k⋅3


P ... position , O ...origin
i , j , k ...array indices

(Eq. 2)

In that special case “Positions” is a HDF5-group containing the HDF5-attributes 
called “origin” and “delta”.

The data fields contained in a representation group are the fibers of the grid 
object. But, “Positions” is a F5-field and no fiber, since it is part of describing the 
base space of the grid.
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Several  predefined  coordinate  systems  are  provided.  Coordinate 
representations are called “Charts” in F5:

Cartesian 4D Integer3D Cartesian 2D triangular
Polar 4D Rational3D Polar 2D edge

Cartesian3D Spherical 2D quad
Polar 3D Axial 2D tetrahedral
Cylindrical 3D Texture 2D hexahedral
Texture 3D

Field 
Bundle/Slice/Grid/Topology/Representation/Field

A F5-field is an element of a F5-representation layer and is identified by a 
custom string. It contains a discrete data set, an array. It maps an index or a tuple 
of indices to a data element, which typically is an index, a scalar, a vector, a 
colour or a tensor of order 2. F5 uses a HDF5 data-sets to store the data in the F5 
file. Figure 18 shows a 2D uniform scalar field as an example for a F5-field.

The F5 data model allows to create many different types of evolving grid objects 
and  store  data  to  their  spatial  elements  or  collections  of  elements.  Also 
representations using different coordinate systems are possible. 

Data is shared inside the data structure by HDF5 links.

An  unlimited  number  of  structures  can  be  build.  Examples  reach  from 
simple scalar fields on a uniform grids to colour fields on triangular surfaces to 
many metric tensor fields on refining irregular meshes. 

To work with F5 data it is not necessary to completely understand its data 
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Figure 18: Scalar field visualised as an intensity map(left) and a height map(right).



organisation. The user works on a simple interface that involves only slices, grids 
and fields.  Charts, topologies and further data organisation is encapsulated by 
higher level functions.

The F5 Library

The F5  library is  written  in  C and  is  available  as  full  source  distribution  at 
[FIB06]. Specially adapted distributions for the scientific applications CACTUS 
[CAC06] and AmiraTM [AMI06] are available besides a standalone library. 

Included with the standalone distribution is a make system [MEM07] that 
comes very handy when developing F5 tools for different platforms since many 
available platforms are supported.

After unpacking the compressed archive, the source files are found in the 
directory F5/ and split to .h and .c files. Various applications can be found in the 
F5/apps directory. They include examples, converters and tools.

The tools  are:  F5ls,  F5merge,  which was not yet implemented,  Q5ls and 
F5smoothparticels.

Some converters  for  different  file  formats  to  and from F5 are  provided. 
Certain F5 files can be converted to truevision's TGA1 images or to OBJ, a format 
developed by alias-wavefront [tm] to store polygon based objects and free form 
curves and surfaces.

 Some formats can only be converted to F5. This includes the following 
formats:  ADCIRC,  used  by  a  research  group  involved  in  hydrodynamics 
[ADC06], the CARPET and GeoTIFF format for interchanging geo-referenced 
raster images, MM52 a format for atmospheric data [MM506] and GSSE a format 
for scientific computing from the GSSE3 group [GSS07].

The following section demonstrates how to work with existing F5 files using 
the predefined library objects. Reading and writing files is explained. It would be 
possible to to add, for example, new topology objects but this would require a 
detailed description of F5 low-level functions, which cannot be provided here.

1 Truevision Advanced Raster Graphics Array 
2 mesoscale model 
3 Generic Scientific Simulation Envirnoment
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Installation of F5 for Linux

An archive of the current release of the F5 library can be downloaded at [FIB06]. 
The file  FiberHDF5.tgz  is the standalone version of F5. It should be unpacked 
and uncompressed into the  directory, which will  contain the  F5 Library. The 
archive already contains a directory FiberHDF5.

tar xfz  FiberHDF5.tgz

For a local user installation this command can be executed in the home directory, 
for a global installation a directory in /opt/ would be appropriate.

F5 provides a sophisticated make file that automates the installation process 
including insatllation of the hdf5 library. To use this feature a make command 
must be executed in the FiberHDF5/hdf5.ref directory.

 The  Makefile in this directory must be edited in before. The hdf5 target 
directory should be set (HDF_INSTALL_DIR) and the URL1 of the hdf5 archive 
should be checked (HDF5URL). 

./make get unpack configure make install_lib

This should download, extract and install the necessary hdf5 library files and then 
compile and install the F5 library. For troubleshooting see the  README file in 
FiberHDF5/hdf5.ref.

If the installation was successful an example can be compiled, for example 
in the directory FiberHDF5/F5/apps/examples/ScalarSimple. The TARGET in the 
Makefile must be changed to ScalarSimple.

./make exec

This compiles and executes the example file.  Four F5 files  should have been 
created in the local directory.

F5ls

F5ls  is  a  tool  for  examining F5 files  by printing its  content  in  ASCII  to  the 
standard output  stream. To compile the F5ls binary execute 

./make

1 Uniform Resource Locator 

46



in the FiberHDF5/F5/apps/tools/F5ls directory. The binary will be compiled and 
placed into a directory, which is named after platform and compilation mode, for 
example,  /FiberHDF5/F5/bin/arch-Linuxi686-Debug.  This  binary  directory 
should be added to your  PATH environment variable, see section Install hdf5 for 
cygwin and Linux.

For every time slice F5ls prints all  grid objects and the fields they contain. 
Its output is as follows:

******* Timeslice for t=0 *******

   Grid `steam'  (no timestep information)

   Root level vertex fields:

      Positions      :  UniformSampling  <0.1.2>  Size: 3x2x2  cartesian coordinates

                               Range: [0,0,0]-[1,0.5,0.5]

      temperature  :  Contigous             <0.1.2>  Size: 3x2x2  scalar

'Root  level'  specifies  the  refinement  level  of  the  following fields,  which 
stands level 0 here. The subsequent information given for the fields then is their 
name, their internal memory layout, the size of each dimension and their type. 
'<0.1.2>'  is  the  current  version  of  the  field  implementation.  In  case  this 
implementation changes,  F5ls  can still  support  different  versions.  The F5 file 
shown contains a scalar field on a uniform 3 dimensional spacial grid.

The F5ls provides the user with all necessary information to work with the 
F5 file.

Q5ls

Q5ls  provides  the  same information  as  F5ls  but  is  presented  as  a  tree  in  an 
graphical user interface window1. See figure 19 for an example:

1 The library Qt®  from Trolltech®  is used for this purpose [TRO07].
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Figure 19: Screenshot of the content of the file Testpat_BD_TumporNeu.f5.



Important Data Types and Functions

Basic Data Types:

F5  supports  a  number  of  basic  data  structures,  which  can  be  used  as  basic 
building  blocks  for  more  complicated  data  structures.  Declarations  are  in  the 
header files  F5types.h and  F5coordinates.h.  Most  types are based on the two 
types F5_float_t and F5_int_t, which are typedefs to a C-float and a C-int.

The  following  table  shows  data  structures  based  on  the  typedef  float  
F5_float_t.

Type Description
F5_vec3_point_t struct of three floats called x,y,z representing a point

F5_vec3_float_t struct of three floats called x,y,z representing 3 floats

F5_metric3_float_t struct for metric33 tensor elements: gxx, gxy, gxz, gyy, 

gyz, gzz

F5_polar_point3_float_t struct with elements r, theta, phi representing a point in 

polar coordinates

F5_texture_point_t struct with elements u and v representing texture 

coordinates on a surface

F5_rgb_real_t struct with elements r, g, b representing red, green and 

blue colours. (as F5_float_t)

F5_rgba_real_t Same as above, but with additional element a for alpha

Structures based on typedef  int  F5_int_t.

Type Description
F5_edge_t struct with 2 elements i, j defining an edge

F5_triangle_t; struct with 3 elements i, j, k defining a triangle

F5_quad_t struct with 2 element i[2], j[2] defining a rectangle

F5_quadL_t same as above but different element i[4]

F5_faces_t struct with 3 elements i, j, k defining a triangular 

surface

F5_tetra_t struct with 4 elements i, j, k, l representing a tetraeder.

F5_hexahedron_t struct with 4 elements i[2], j[2], k[2], l[2] representing a 

cubic.

F5_hexahedronL_t same as above but with element i[8]
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Other structures

Type Description
IntegerFraction struct with 2 elements int num, int denum 

representing a rational number

IntegerFraction3D struct with 3 IntegerFraction elements x, y, z

F5_refinement3D_point_t union representing a 3D point using rational integer 

coordinates with IntegerFraction3D crd or inedexed 

IntegerFraction d[3] 

TensorTypes A tensor representation based on F5Ttensor_t**

ChartDomain_IDs

The  struct  ChartDomain_IDs declared  in  F5Bchart.h is  the  internal 
representation for coordinate systems (charts) and has the following layout:

const char* domain_name

unsigned refs

int perm_vector[FIBER_MAX_RANK]

hid_t Point_hid_t

hid_t Vector_hid_t

hid_t Covector_hid_t

hid_t Bilinearform_hid_t

hid_t Metric_hid_t

F5Ttensor_t** TensorTypes 

Each  Chart  has  a  name,  a  reference  counter  and  a  permutation  vector,  that 
specifies what ordering is used in multidimensional arrays1. The ids  hid_t point 
then to prototype elements of the coordinate system. These prototypes are stored 
as HDF5-named-types and store the data types used for the numbers, names of 
the elements and type of the coordinate. For example Point_hid_t could be the id 
hid_t to  a  hdf5  compound  type  containing  the  elements  of  type 
H5T_NATIVE_FLOAT with names “x”, “y” and “z”. For further examples see 
[FIB06, Related Pages, HDF5 Chart Objects]

In the current version of F5 most floating point data are based on floats one 
must create a new chart to write double floating point data. In contrast, reading of 
double data to data of a compatible chart using float would be no problem, since 

1 For example, C and FORTRAN use different orders.
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HDF5 can convert them automatically.

 Functions to create supported chart objects (see section Representation) are 
implemented  in  F5coordinates.c.  They  use  four  basic  functions,  which  are 
declared in F5B.h and defined in F5B.c. They return a struct ChartDomain_IDs 
can be used to create new user defined charts.

F5B_new_global_domain() //for positional types, 

F5B_new_global_chart() //for also tangential and tensor types,

F5B_new_integer_regular_domain3D() //for mappings between points and

F5B_new_rational_regular_domain3D() //for mappings using integer fractions. 

F5Path

The struct F5Path declared in F5Path.h describes the location of a F5 object like 
a slice, a grid, a chart, etc. inside the f5-hdf5-file. It contains all hid_t IDs of hdf5 
objects  involved.  The  F5Path  struct is  important  when  reading  F5  files.  All 
objects that contain information can be accessed via the F5Path struct. It has the 
following members:

ChartDomain_IDs * myChart hid_t Grid_hid 

ChartDomain_IDs * FileIDs hid_t GlobalChart_hid

char * field_info hid_t Charts_hid 

hid_t field_enum_type_hid hid_t Chart_hid 

hid_t File_hid hid_t Topology_hid 

hid_t ContentsGroup_hid hid_t Representation_hid

id_t Slice_hid hid_t Field_hid 

Writing F5

Some high level functions have been implemented in the F5 library. They all 
write or append data blocks of certain types to F5 files. For example, to write a 
vector field specified on a uniform Cartesian 3D space following function can be 
used:

 F5_API F5Path* F5Fwrite_uniform_cartesian3D(hid_t file_id, double time,

                                            const char*gridname,

                                            const F5_vec3_point_t*origin,

                                            const F5_vec3_float_t*spacing,

                                            hsize_t dims[3],

                                            const char*fieldname,
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                                            hid_t fieldtype, 

                                            const void * dataPtr,

                                            const char*coordinate_system, 

                                            hid_t property_id);

The  parameters  include  a  file  id,  a  time  slice,  the  grid name,  parameters  to 
specify the  positions  of  the  uniform grid,  a  field name,  the  type of  the  field 
elements, the data pointer, a coordinate system and a additional property list for 
HDF5.

The following field types declared in F5coordinates.h are available:

F5T_COORD3_FLOAT F5T_TRIANGLE

F5T_VEC3_FLOAT F5T_QUAD

F5T_METRIC33_FLOAT F5T_FACES

F5T_INT_FRACTION F5T_TETRAHEDRON

F5T_EDGE F5T_HEXAHEDRON     

These are convenient #defines of chart functions and are pointing to elements of a 
ChartDomainId. For example:

  #define F5T_COORD3_FLOAT    F5B_standard_cartesian_chart3D()->Point_hid_t

The high level functions are declared in the header files:

F5particles.h for particle based data

F5surface.h for surface based data

F5uniform.h for data based on uniform grids

F5AMR.h for data based on adaptive meshes

F5image.h for image based data

Detailed information can be found on-line [FIB06] or directly in the source code.

Reading F5

Reading F5 data structures is done by iterators, similar to iterators used in HDF5. 
F5 iterators are declared in F5iterate.h.

To open a certain field iterators over slices, grids and fields should be used. 
First the time slice iterator must be called and a callback is function passed. The 
callback is invoked in each slice iteration step and has to be implemented by the 
user. 

int F5iterate_timeslices( hid_t file_id, int *idx,

     F5_iterate_timeslices_t*ts_callback, void *user_data ) ;

herr_t ts_callback(F5Path*slicePath, double time, void *user_data);
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The iterator iterates over all time slices of the F5 file starting at group (or slice) 
with index idx. User data can be passed to the callback function using the pointer 
user_data. The current id to the F5 object (slice) in the iteration is available via 
the struct F5Path. 

To iterate over all grids in the slice group one has to call the F5 grid iterator 
function inside the slice callback function.

int F5iterate_grids( F5Path*F5Slice, int *idx, 

F5_iterate_grids_t*gr_callback, void *operator_data);

herr_t gr_callback(F5Path*grid, const char*gridname, void *operator_data);

Finally, a field iterator is used inside the grid callback function to iterate over 
fields contained in a grid, for example for vertex based fields:

int F5iterate_vertex_fields( F5Path*grid, int *idx, 

F5_iterate_fields_t*fd_callback, void *operator_data,

const char*coordinate_system, F5_fieldtype_t*what) ;

herr_t fd_callback(F5Path*field, const char*fieldname, void *operator_data);

Inside the field iterator the required data-set can be accessed using F5 functions 
or HDF5 functions, like H5Dread(). 

The following example shows some pseudo code for an iteration to read a 
field at a certain time in a certain grid:

typedef struct

{

char* grid_name;

char* field_name;

double time;

...

} my_Data;

herr_t fd_callback(F5Path*field, const char*fieldname, void *operator_data);

herr_t gr_callback(F5Path*grid, const char*gridname, void *operator_data);

herr_t ts_callback(F5Path*slicePath, double time, void *user_data);

int main()

{

F5Path Path;

my_Data dat;

/* fill data of dat */

...

F5iterate_timeslices(file_id, NULL, ts_callback, &dat); 

return 0;

}
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herr_t field_iterator(F5Path*field, const char*fieldname, void *operator_data)

{

my_Data*dat = (my_Data*)(operator_data); 

...

if(strcmp(dat->field_name, fieldname) == 0)

{

/* open file, use F5 or HDF5 functions to read data-set */

}

return 0;

}

...

F5 functions that can be used for reading inside the field callback function are 
field functions declared in F5F.h and high level functions of supported structures 
like  uniform  grids  (F5uniform.h),  surfaces  (F5surface.h),  adaptive  meshes 
(F5AMR.h) and particles (F5particles.h). 

Functions declared in F5F.h 

All  function  use  a  F5Path to  refer  to  a  certain  F5  object.  This  F5Path is 
automatically provided inside the field iterator callback function.

Open and close a field by given F5Path and name.

int F5Fopen(F5Path*f, const char*fieldname);

void F5Fclose(F5Path*f);

Check if the field is a group.

int F5Fis_group(const F5Path*);

Get data-type and data-space of the field elements.

hid_t F5Fget_type(F5Path*f);

hid_t F5Tget_space(F5Path*f);

Permute  a  given  array  of  dimensions  to  the  memory  ordering  of  a  source 
coordinate system.

hsize_t*F5Tpermute_dimensions(  F5Path*fpath, int rank, hsize_t*target_dims,

                                     const hsize_t*source_dims ); 

Get the number of elements in each dimension of a given field. This is equivalent 
to calling first  F5Tget_space()  and second  F5Tpermute_dimensions().  Return 
value is zero in case of an error.
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int F5Tget_extent(F5Path*f, hsize_t*dims, int maxDims);

Get the index_depth of the fields elements, and the refinement level. Results are 
returned via pointers. Return value is zero in case of an error.

int F5Tget_index_depth(F5Path*f, int*result);

int F5Tget_refinement_level(F5Path*f, hsize_t*dims, int maxDims);

Get the minimum and maximum values of the fields elements.  Minimum and 
maximum are stored as the same type as the field elements. In case a “Positions” 
field is read this function can be used to get the bounding box of the positions. 

int F5Fget_range(F5Path*f, void*min, void*max, hid_t memtype_id);

int F5Fget_fragment_range( F5Path*f, const char*fragment_name,

 void*min, void*max, hid_t mem_type_id );

Get the average value of all elements of a field.

int F5Fget_average(F5Path*f, void*avg);

Get the standard deviation of the average value.

int F5Fget_deviation(F5Path*f, void*dev);

Check if a field is a linear mapping of points to values.

int F5Fis_linear(F5Path*fpath, const char*fieldname);

Similar checks for different mappings.

int F5Fis_fragmented(F5Path*fpath, const char*fieldname);

int F5Fis_separatedcompound(F5Path*fpath, const char*fieldname);

Read  a  linear  field.  A  linear  field  is  completely  described  by  dimensions, 
origin(base) and delta. Return value is zero in case of an error.

int F5Fread_linear(F5Path*fpath,

                          hsize_t*dims,

                          hid_t fieldtype, void*base, void*delta);

int F5Fread_linearo(F5Path*fpath, const char*fieldname,

                          hsize_t*dims,

                          hid_t fieldtype, void*base, void*delta);

Get the F5Path of the according field in the previous time slice.

F5Path*F5FopenMostRecentSlice(hid_t File_id, double*t, const char*gridname, 

        const char*fieldname,
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        const char*coordinate_system); 

Returns a hdf5 named data-type describing the field-type. The named data type is 
also added to the file specified in F5Path.

hid_t F5file_type(F5Path*fpath, hid_t fieldtype);

F5Fgrab() returns the hid_t of a field and removes it from the F5Path.

hid_t F5Fgrab(F5Path*f);

Functions declared in F5L.h

These  functions  operate  on  fields  but  are  of  a  lower  level  than  those  shown 
above. They provide similar functionality and are not further described here.

F5LTget_index_depth( hid_t Top_hid );

int F5Lis_linear( hid_t Rep_id, const char*fieldname );

int F5Lread_linear( hid_t F_id, hsize_t*dims, 

hid_t fieldtype, void* base, void* delta);

hid_t F5Lget_type( hid_t Field_hid, int FieldIDisGroup );

int F5Lget_field_dimension_and_type( hid_t Representation_hid, 

     const char*fieldname,

        hsize_t dims[FIBER_MAX_RANK], 

hid_t*type_id );

int F5LAget_dimensions( hid_t Field_id, const char*aname,

hsize_t dims[FIBER_MAX_RANK]);

Functions declared in F5uniform.h

Get bounding box and dimensions of a uniform grid of vertices in Cartesian 3D 
coordinates.

hid_t F5BgetUniformCartesianGridVertexData3D(  hid_t SliceID,

                                                    const char*gridname,

                                                   const char*fieldname,

                                                  F5_vec3_point_t*bbox_min,

F5_vec3_point_t*bbox_max,

                                                   int dims[3]);
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Example F5 file

Data, collected and derived from a MRI1 scan of a human brain, was read using 
the  F5  library.  More  information  about  the  MRI  data  sets  can  be  found  in 
[BBH06]. The F5 file  Testpat_BD_TumorNeu.f5 is serves as an example in this 
thesis. First inspect the high level information contained inside the file by using 
F5ls. 

$ F5ls Testpat_BD_TumorNeu.f5

******* Timeslice for t=0 *******

   Grid `Testpat_BD_TumorNeu'  (no timestep information)

   Root level vertex fields:

   DTI_tensor    :  *illegal*   <0.1.1>  Size: 128x128x56  metric tensor

   Positions       :  *illegal*   <0.1.1>  Size: 128x128x56  cartesian coordinates

                            Range: [-12.8,-18.3593,-7.65525]-[12.6,7.04068,4.96347]

The file contains a metric tensor  field called 'DTI_tensor' at time  slice t=0.0, it 
resides on a grid called 'Testpat_BD_TumorNeu'. The size and the range of the 
Cartesian coordinates is shown. The 'Range' output informs us on the spacial data 
range at the positions. At array index (0,0,0) the position of the element is (-12.8,-
18.3593,-7.65525) and at (127,127,55) it is (12.6, 7.04068, 4.96347).

Certain error messages are printed when using F5ls with the file. They come 
from the changes the F5 library has undergone during development. The f5-file 
was created with an older version of the F5 and hdf5 library. This is also the 
reason why the array type is shown as *illegal*, but in fact it is “Contiguous” for 
the “DTI_tensor” and “UniformSampling” for the “Positions”.

To examine the details of a F5 file one can use the hdf5 low level tools. This 
step is usually not required, but demonstrates the F5 data organisation:

$ h5ls -r Testpat_BD_TumorNeu.f5 

/Charts                  Group

/Charts/Cartesian3D      Group

/Charts/Cartesian3D/Metric Type

/Charts/Cartesian3D/Point Type

/Charts/Cartesian3D/StandardCartesianChart3D Group

/Charts/Cartesian3D/StandardCartesianChart3D/Coordinates Group, same as 

/Charts/Cartesian3D

/T=0                     Group

/T=0/Testpat_BD_TumorNeu Group

1 Magnet resonance imaging uses images of magnet resonance tomography
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/T=0/Testpat_BD_TumorNeu/Charts Group

/T=0/Testpat_BD_TumorNeu/Charts/StandardCartesianChart3D Group

/T=0/Testpat_BD_TumorNeu/Charts/StandardCartesianChart3D/GlobalChart -> 

/Charts/Cartesian3D/StandardCartesianChart3D

/T=0/Testpat_BD_TumorNeu/Fields Group

/T=0/Testpat_BD_TumorNeu/Fields/Positions Group

/T=0/Testpat_BD_TumorNeu/Points Group

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D Group

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/DTI_tensor Dataset 

{56, 128, 128}

/T=0/Testpat_BD_TumorNeu/Points/StandardCartesianChart3D/Positions Group

/TableOfContents         Group

/TableOfContents/Fields  Group

/TableOfContents/Fields/DTI_tensor Group

/TableOfContents/Fields/DTI_tensor/Testpat_BD_TumorNeu -> 

/TableOfContents/Grids/Testpat_BD_TumorNeu

/TableOfContents/Fields/Positions Group

/TableOfContents/Fields/Positions/Testpat_BD_TumorNeu -> 

/TableOfContents/Grids/Testpat_BD_TumorNeu

/TableOfContents/Grids   Group

/TableOfContents/Grids/Testpat_BD_TumorNeu Group

/TableOfContents/Grids/Testpat_BD_TumorNeu/T=0 -> /T=0

/TableOfContents/Parameters Group

/TableOfContents/Parameters/Time Group

/TableOfContents/TypeInfo Type

The root group contains time  slices groups as well as the groups “Charts” and 
“TableOFContents”. The “TableOfContest” group is introduced to organise data 
in a reverse order, using groups and links. No real data is stored there. The aim is 
to simplify traversing the graph internally. 'Charts' is a global atlas for the F5 file 
and is similar to a grid specific atlas, see section Grid. 

 The slice group is named “T=0” for the slice at time t=0. The slice contains 
a  grid object. Inside the  grid object resides the atlas “charts” that contains the 
coordinate system used in subgroups of the grid, a ”StandartCartesian3D”.

The  grid  object also  contains  a  subgroup  called  “Fields”,  which  is  an 
additional linking in the structure to simplify data access for F5 internally.

“Points” is a topology of the grid that contains the coordinate representation 
“StandartCartesian3D”. This representation houses the group “Positions” (which 
contains origin and delta,  according to  section Representation)  and the actual 
tensor data-set.
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Basic Tensor Type Data Structures in C and C++

To  test  and  demonstrate  the  usage  of  F5  some  data  structures  have  been 
implemented in C and C++. These data structures are an collection of objects and 
functions to operate on tensor data based on uniform grids.  Types for  scalar, 
vector and metric tensor fields have been implemented and are applicable off the 
shelf.

C

This section presents one data structure implemented in C for operating on  a 
metric tensor field  data.  The other structures for scalar and vector types have 
been implemented similarly and are therefore not described.

A struct TSMetric33F1 is declared, which can be used for storing data of one 
metric tensor field of a uniform grid object of a certain time slice (declaration can 
be found in TSMetric33F.h). The struct includes elements that store information 
time, name of the grid, name of the field and name of the tensor elements, which 
are “gxx”, “gxy”, “gxz”, “gyy”, “gyz” and “gzz”.

Other data collected in the struct are the minimum and maximum value of 
the tensor elements, the positions of the grid points via origin and delta and a 
pointer  to  the  float  data  field  containing  the  numerical  data.  The 
multidimensional data is stored in an one dimensional array with a layout in the 
following order: elements,  x, y, z. (elements in the inner loop, z in the outer 
loop)

typedef struct

{

double slice; // physical time of slice

char*grid_name; // name of the according grid object

char*field_name; // name of the according field

int elements; // number of tensor elements

char**elements_names;

hsize_t dim[3];    // xyz dimensions of data

F5_vec3_point_t origin; // position at position index xyz <0,0,0> of *data

          F5_vec3_float_t delta;   // distances between two discrete positions

1 TSMetric33F stands for Tensor Slice Metric33 Float
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float*elements_max;  // max value of each element in order of memoryorder 

float*elements_min;  // min value of each element in order of memoryorder

int datasize;

float*data;          // data block memoryorder elem, x,y,z

} TSMetric33F ;

Several functions that operate on the struct have been implemented as well.  All 
function names start with “TSMetric33_” and pass a pointer to the struct as the 
first parameter. 

There are functions to create and allocate memory for the elements in the 
struct, to reallocate memory and to free a struct:

int TSMetric33F_create( TSMetric33F*TFS, const char*gridname,

const char*fieldname, double time,

 int xdim, int ydim, int zdim)

int TSMetric33F_reallocdata( TSMetric33F*TFS, int xdim, int ydim, int zdim)

int TSMetric33F_free( TSMetric33F*TFS)

There are functions to print  further information on the console for  debugging 
purposes: information about the data excluding the numerical tensor field data, a 
dump of all tensor element values and an output of one tensor at a given index.

void TSMetric33F_printinfo( TSMetric33F*TFS )

void TSMetric33F_printdata( TSMetric33F*TFS )

void TSMetric33F_print( TSMetric33F*TFS, int i, int j, int k )

A function that  calculates  the  minimum and maximum values  of  each  tensor 
element.

void TSMetric33F_setminmax( TSMetric33F*TFS )

Data can be accessed through several methods. The user can decide to use set and 
get functions. They implement index range check and fail if the index is out of 
range. 

int TSMetric33F_set( TSMetric33F*TFS, double d, int e, int x, int y, int z )

double TSMetric33F_get( TSMetric33F*TFS, int e, int x, int y, int z )

The user can also operate directly on the float* of the data block using memcpy 
or similar.

When accessing the data block as an one dimensional array1 one can use the 

1 In C pointer and array references can be used interchangeably. 
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index_map function that calculates the according one dimensional index for the 
data array by given tensor element index and 3 indices of the 3D uniform grid.

int TSMetric33F_index_map( TSMetric33F*TFS, int e, int x, int y, int z )

Inside the index map function a range check can be enabled by a macro definition 
previous to the inclusion of the TSMetric33F.h.

#define TS_INDEXCHECK

A program can be developed and executed in a “save” mode. After a successful 
testing, the range check can then be disabled.

The index validation function is used internally and returns 0 if an index is 
within the correct range.

int TSMetric33F_valid_index( TSMetric33F*TFS, int e, int x, int y, int z )

Finally, functions for reading and writing the data structure to and from a F5 file 
are provided. Their parameters include a struct pointer, the file name, the time 
slice, the grid name and the field name. 

int TSMetric33F_append( TSMetric33F*TFS, char*filename )

The append function writes  data  of  a  TSMetric33F struct  into  the  F5 file.  It 
creates a new file if the file specified does not exist, otherwise data is appended 
to the file. If a field in the file has the same name, slice, grid, charts etc. it is 
overwritten.

To overwrite a existing F5 file delete it before calling the append function1.

int TSMetric33F_open( TSMetric33F*TFS, const char*filename, double t,

const char*gridname, const char*fieldname )

The iterator callback functions are used internally in the open function, according 
to section Reading F5.

herr_t TSMfield_iterator(F5Path*field, const char*fieldname, void *operator_data)

herr_t TSMgrid_iterator(F5Path*grid, const char*gridname, void *operator_data)

herr_t TSMtimeslices_iterator(F5Path*slicePath, double time, void *user_data)

1 For example, one can use the unlink(char *path) declared in unistd.h under Linux.
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The following example opens a metric tensor field from a f5-file, modifies the 
data and appends it into the same file at a different time slice.

//#define TS_INDEXCHECK

#include "TSMetric33.h"

int     main()

{

    int e, i, j, k;

    TSMetric33F tumor; 

    TSMetric33F_open( &tumor, “Testpat_BD_TumorNeu.f5", 0.0, 

  "Testpat_BD_TumorNeu", "DTI_tensor" ); 

    TSMetric33F_printinfo( &tumor ); 

    TSMetric33F_print( &tumor, 8,24,40 );

    for(k = 0; k < tumor.dim[2]; k++) {

         for(j = 0; j < tumor.dim[1]; j++) {

             for(i = 0; i < tumor.dim[0]; i++) {

                 for(e = 0; e < tumor.elements; e++)

                 {

          tumor.data[TSMetric33F_index_map(&tumor, e, i, j, k)] =

 do_some_computation(e, i, j, k) * tumor.elements_max[e];

                 }

    }}}

    tumor.slice = 0.1;

    TSMetric33F_append(&tumor, “Testpat_BD_TumorNeu.f5");

    TSMetric33F_free(&tumor);

    return 0;

}

C++

C++ language features allow to simplify and extend the possible functionality of 
the F5 interface. Using C++ template techniques many structures can be mapped 
to generic language expressions, which reduced lines of code and simplifies code 
modification and expansion, see [STR97]. 

A template basis class UniformSlice declared in the file UniformSlice.hpp is 
introduced that is compatible to all data structures defined on an uniform grid. It 
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stores one data field of one slice. The basic number type of the tensor elements 
are determined by the generic type of the template (for example float). Only the 
member  functions  for  reading  and  writing  F5  files  have  to  be  implemented 
especially for each supported type. All other functions work with any type. The 
type of the template is automatically detected and the according read or write 
routines are called. It is also stored as a std::string data_type.

At the moment the only generic type that is fully supported is the float type. 
The user is informed if he tries to use an unsupported  type. Other  types can be 
added with minimal effort by expanding the open and append member functions 
and adjusting the iterators.

The class supports field the field types scalar, vector and metric33. This has 
to be specified by an according  std::string “scalar”, “vector3” or “metric33” as 
first  parameter in the constructor.  Class members like number of  elements or 
element names are prepared according to this information.

The members of the class provide the same functionality as the functions 
described in the section C and are not further described. Also a similar macro for 
enabling index range checking is provided (US_INDEXCHECK). 

herr_t USFts_callback(F5Path*slicePath, double time, void *user_data);

herr_t USFgr_callback(F5Path*grid, const char*gridname, void *operator_data);

herr_t USFfd_callback(F5Path*field, const char*fieldname, void *operator_data);

template <typename T>

class UniformSlice

{

private:

double slice;

std::string grid_name;

std::string field_name;

std::string field_type;

std::string data_type;

std::vector<std::string> elements_names;

int elements;

hsize_t dim[3];

F5_vec3_point_t origin;

F5_vec3_float_t delta;
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std::vector<T> elements_max;

std::vector<T> elements_min;

int datasize;

T*data;

public:

UniformSlice(std::string field_type, std::string grid, std::string field, double 

t, int xdim, int ydim, int zdim);

virtual ~UniformSlice();

void printInfo();

void printElement( int x, int y, int z );

void printData();

void minMax();

void set( T a, int e, int x, int y, int z );

T get( int e, int x, int y, int z );

T*getDataPointer();

T& operator[] (int i);

int indexMap( int e, int x, int y, int z );

int validIndex( int e, int x, int y, int z );

void reallocdata( const int x, const int y, const int z );

int open( const char* file, double time, const std::string grid,

     const std::string field );

void append( const std::string file );

std::string getFieldType();

std::string getDataType();

};
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Conclusion

The thesis introduced the scientific file format hdf5 by presenting its concepts, 
giving  a  practical  guide  to  use  the  hdf5  C-library  and  demonstrating  a 
visualisation of a certain scientific density data-set.

It then introduced the file format F5, which is based on hdf5. The aim of F5, 
the mathematical motivation and the concept of data organisation were presented. 
A practical part described the C-library F5 and provided a guide to read and write 
F5 files.

Finally two specific  data structures of tensor based data on uniform grid 
were implemented in C and C++, supporting different data field types.

These  implementations  could  further  be  enhanced  and  extended,  for 
example,  by  supporting  more  tensor  field  types  (not  only  scalar,  vector  and 
metric33)  or  by providing  arithmetic  functions  for  element  wise  addition,  or 
similar.

  The F5 library itself also has room for further extensions. For example data 
types based  on  doubles or  support  of  additional  high  level  grid  structures. 
Enhancement of the F5ls or Q5ls to view selected fragments of data contained in 
a F5 file would also be a nice extension. 

64



Bibliography

[ADC06] Homepage of the Adcirc Development Group,  ADCIRC,
http://www.nd.edu/~adcirc/, 2006

[AMI06] Homepage of Mercury Computer Systems  Inc.,  amiraTM,
http://www.amiravis.com/, Berlin, 2006

[BBH06] Benger, W., Bartsch, H., Hege, H.-C., Kitzler, H., Shumilina, A., and
Werner, A, Visualizing Neuronal Structures in the Human Brain
via Diffusion Tensor MRI,
International Journal of Neuroscience 116, 4, pp. 461—514, 2006

[BEN04] Werner Benger, Tensor Field Visualisation via a Fiber Bundle Data
Model, Department of Mathematics and Computer Science, University of
Berlin, 2004

[BP89] David M. Butler and M. H. Pendley, A visualization model based on the
mathematics of fiber bundles, Computers in Physics 3, 1989, no. 5, 45-51

[BRO98] Manfred Broy, Informatik Eine grundlegende Einführung, Band 1,
Springer-Verlag, Berlin Heidelberg New York, 1998

[CAC06] Homepage of Cactus, http://www.cactuscode.org, 2006

[CYG07] Homepage of cygwin project, GNU+CYGNUS+WINDOWS,
http://cygwin.com/, 2007

[FIB06] Homepage of Werner Benger, The Fiber Bundle HDF5 Library,
http://www.fiberbundle.net/, 2006

[GOU03] David A. D. Gould, Complete Maya Programming, Morgan Kaufmann
Publishers, Elsevier Science, 2003

[GSS07] Homepage by René Heinzl, Generic Scientific Simulation Environments, 
http://www.gsse.at/start/, Vienna, 2007

[H5D06] Homepages of The HDF Group (THG), DDL in BNF for HDF5,
http://www.hdfgroup.com/HDF5/doc/ddl.html, Champaign, 2006

[H5R06] Homepages of The HDF Group (THG), HDF5: API Specification
Reference Manual, 
http://www.hdfgroup.com/HDF5/doc/RM_H5Front.html, Champaign, 
2006

[H5U06] Homepages of The HDF Group (THG), HDF5 User's Guide, 
http://hdfgroup.com/HDF5/doc/UG/, Champaign, 2006

65



[HDF06] Homepages of The HDF Group (THG), THG Home Page
Information, Support, and Software from The HDF Group,
http://hdfgroup.com, Champaign, 2006

[LRG06] Homepage of the Relativity Group, Department of Physics and
Astronomy, Lusiana State University, http://relativity.phys.lsu.edu/,
Baton Rouge, 2007

[MAY07] Homepage of Autodesk Inc., Autodesk®   Maya®,
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7663079,
San Rafael, 2007 

[MEM07] Homepage of Werner Benger, Metamake or Make++ or MCS,
http://www.photon.at/make/, 2007

[MEN07] Homepage of Mental Images Inc., mental images,
http://www.mentalimages.com, Berlin, 2007

[MM506] Homepage of MM5, MM5 Community Model,
http://www.mmm.ucar.edu/mm5/, UCAR, Boulder, 2006

[MVS05] Homepage of Microsoft Coorparation, 
http://msdn2.microsoft.com/en-us/library/ms950416.aspx, Redmond,
2007

[RAR07] Homepage of win.rar GmbH, http://www.win-rar.com/, Bremen, 2007

[STR97] B. Stroustrup, The C++ Programming Language (3rd edition),
Addison Wesley Longman, Reading MA, 1997 

[SZIP07] Homepage of The HDF Group (THG), Szip Compression in HDF
 Products, http://hdfgroup.com/doc_resource/SZIP/, Champaign, 2006

[TRO07] Homepage of trolltech, TROLLTECH, http://www.trolltech.com,
Redwood City, 2007 

[ZLIB05] Homepage of Greg Roelofs, Jean-loup Gailly and Mark Adler,
http://www.zlib.net/, 2005

66


	Introduction
	Hierarchical Data Format (HDF)
	Key Features of the HDF5 library
	Concept of Data Organisation
	The HDF5 Library
	Working with HDF5
	Installation HDF5 for cygwin and Linux
	Install hdf5 for MS Visual Studio®
	Using the Binary Tools
	The command H5ls
	H5dump


	Writing, Reading and Debugging Data using HDF5
	Storing a simple data-set
	Reading a simple dataset
	Creating Groups, Attributes, Comments and Links
	Reading Groups, Comments, Attributes and Links
	Maya Plug-In HDF5_Read_Fluid


	F5
	Fiber
	Fiber Bundles
	F5 File Organisation
	Bundle
	Slice
	Grid
	Topology
	Representation
	Field 

	The F5 Library
	Installation of F5 for Linux
	F5ls
	Q5ls
	Important Data Types and Functions
	Basic Data Types:
	ChartDomain_IDs
	F5Path
	Writing F5
	Reading F5


	Example F5 file

	Basic Tensor Type Data Structures in C and C++
	C
	C++

	Conclusion

