writedata.cpp

This example shows how to write datasets.
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdfgroup.org/HDF5/doc/Copyright.html.  If you do not have          *
 * access to either file, you may request a copy from help@hdfgroup.org.     *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 *  This program shows how the select_hyperslab and select_elements
 *  functions are used to write selected data from memory to the file.
 *  Program takes 48 elements from the linear buffer and writes them into
 *  the matrix using 3x2 blocks, (4,3) stride and (2,4) count.
 *  Then four elements  of the matrix are overwritten with the new values and
 *  file is closed. Program reopens the file and reads and displays the result.
 */

#ifdef OLD_HEADER_FILENAME
#include <iostream.h>
#else
#include <iostream>
#endif
#include <string>

#ifndef H5_NO_NAMESPACE
#ifndef H5_NO_STD
    using std::cout;
    using std::endl;
#endif  // H5_NO_STD
#endif

#include "H5Cpp.h"

#ifndef H5_NO_NAMESPACE
    using namespace H5;
#endif

const H5std_string FILE_NAME( "Select.h5" );
const H5std_string DATASET_NAME( "Matrix in file" );
const int   MSPACE1_RANK = 1;   // Rank of the first dataset in memory
const int   MSPACE1_DIM = 50;   // Dataset size in memory
const int   MSPACE2_RANK = 1;   // Rank of the second dataset in memory
const int   MSPACE2_DIM = 4;    // Dataset size in memory
const int   FSPACE_RANK = 2;    // Dataset rank as it is stored in the file
const int   FSPACE_DIM1 = 8;    // Dimension sizes of the dataset as it is
const int   FSPACE_DIM2 = 12;   //      stored in the file
const int   MSPACE_RANK = 2;    // Rank of the first dataset in memory
const int   MSPACE_DIM1 = 8;    // We will read dataset back from the file
const int   MSPACE_DIM2 = 9;    //      to the dataset in memory with these
                                //      dataspace parameters
const int   NPOINTS = 4;        // Number of points that will be selected
                                //      and overwritten

int main (void)
{
    int   i,j; // loop indices */

    /*
     * Try block to detect exceptions raised by any of the calls inside it
     */
    try
    {
        /*
         * Turn off the auto-printing when failure occurs so that we can
         * handle the errors appropriately
         */
        Exception::dontPrint();

        /*
         * Create a file.
         */
        H5File* file = new H5File( FILE_NAME, H5F_ACC_TRUNC );

        /*
        * Create property list for a dataset and set up fill values.
        */
        int fillvalue = 0;   /* Fill value for the dataset */
        DSetCreatPropList plist;
        plist.setFillValue(PredType::NATIVE_INT, &fillvalue);

        /*
         * Create dataspace for the dataset in the file.
         */
        hsize_t fdim[] = {FSPACE_DIM1, FSPACE_DIM2}; // dim sizes of ds (on disk)
        DataSpace fspace( FSPACE_RANK, fdim );

        /*
         * Create dataset and write it into the file.
         */
        DataSet* dataset = new DataSet(file->createDataSet(
                DATASET_NAME, PredType::NATIVE_INT, fspace, plist));

        /*
         * Select hyperslab for the dataset in the file, using 3x2 blocks,
         * (4,3) stride and (2,4) count starting at the position (0,1).
         */
        hsize_t start[2]; // Start of hyperslab
        hsize_t stride[2]; // Stride of hyperslab
        hsize_t count[2];  // Block count
        hsize_t block[2];  // Block sizes
        start[0]  = 0; start[1]  = 1;
        stride[0] = 4; stride[1] = 3;
        count[0]  = 2; count[1]  = 4;
        block[0]  = 3; block[1]  = 2;
        fspace.selectHyperslab( H5S_SELECT_SET, count, start, stride, block);

        /*
         * Create dataspace for the first dataset.
         */
        hsize_t dim1[] = {MSPACE1_DIM};  /* Dimension size of the first dataset
                                           (in memory) */
        DataSpace mspace1( MSPACE1_RANK, dim1 );

        /*
         * Select hyperslab.
         * We will use 48 elements of the vector buffer starting at the
         * second element.  Selected elements are 1 2 3 . . . 48
         */
        start[0]  = 1;
        stride[0] = 1;
        count[0]  = 48;
        block[0]  = 1;
        mspace1.selectHyperslab( H5S_SELECT_SET, count, start, stride, block);

        /*
         * Write selection from the vector buffer to the dataset in the file.
         *
         * File dataset should look like this:
         *                    0  1  2  0  3  4  0  5  6  0  7  8
         *                    0  9 10  0 11 12  0 13 14  0 15 16
         *                    0 17 18  0 19 20  0 21 22  0 23 24
         *                    0  0  0  0  0  0  0  0  0  0  0  0
         *                    0 25 26  0 27 28  0 29 30  0 31 32
         *                    0 33 34  0 35 36  0 37 38  0 39 40
         *                    0 41 42  0 43 44  0 45 46  0 47 48
         *                    0  0  0  0  0  0  0  0  0  0  0  0
         */
        int    vector[MSPACE1_DIM];     // vector buffer for dset

        /*
         * Buffer initialization.
         */
        vector[0] = vector[MSPACE1_DIM - 1] = -1;
        for (i = 1; i < MSPACE1_DIM - 1; i++)
            vector[i] = i;

        dataset->write( vector, PredType::NATIVE_INT, mspace1, fspace );

        /*
         * Reset the selection for the file dataspace fid.
         */
        fspace.selectNone();

        /*
         * Create dataspace for the second dataset.
         */
        hsize_t dim2[] = {MSPACE2_DIM};  /* Dimension size of the second dataset
                                           (in memory */
        DataSpace mspace2( MSPACE2_RANK, dim2 );

        /*
         * Select sequence of NPOINTS points in the file dataspace.
         */
        hsize_t coord[NPOINTS][FSPACE_RANK]; /* Array to store selected points
                                                from the file dataspace */
        coord[0][0] = 0; coord[0][1] = 0;
        coord[1][0] = 3; coord[1][1] = 3;
        coord[2][0] = 3; coord[2][1] = 5;
        coord[3][0] = 5; coord[3][1] = 6;

        fspace.selectElements( H5S_SELECT_SET, NPOINTS, (const hsize_t *)coord);

        /*
         * Write new selection of points to the dataset.
         */
        int    values[] = {53, 59, 61, 67};  /* New values to be written */
        dataset->write( values, PredType::NATIVE_INT, mspace2, fspace );

        /*
         * File dataset should look like this:
         *                   53  1  2  0  3  4  0  5  6  0  7  8
         *                    0  9 10  0 11 12  0 13 14  0 15 16
         *                    0 17 18  0 19 20  0 21 22  0 23 24
         *                    0  0  0 59  0 61  0  0  0  0  0  0
         *                    0 25 26  0 27 28  0 29 30  0 31 32
         *                    0 33 34  0 35 36 67 37 38  0 39 40
         *                    0 41 42  0 43 44  0 45 46  0 47 48
         *                    0  0  0  0  0  0  0  0  0  0  0  0
         *
         */

        /*
         * Close the dataset and the file.
         */
        delete dataset;
        delete file;

        /*
         * Open the file.
         */
        file = new H5File( FILE_NAME, H5F_ACC_RDONLY );

        /*
         * Open the dataset.
         */
        dataset = new DataSet( file->openDataSet( DATASET_NAME ));

        /*
         * Get dataspace of the dataset.
         */
        fspace = dataset->getSpace();

        /*
         * Select first hyperslab for the dataset in the file. The following
         * elements are selected:
         *                     10  0 11 12
         *                     18  0 19 20
         *                      0 59  0 61
         *
         */
        start[0] = 1; start[1] = 2;
        block[0] = 1; block[1] = 1;
        stride[0] = 1; stride[1] = 1;
        count[0]  = 3; count[1]  = 4;
        fspace.selectHyperslab(H5S_SELECT_SET, count, start, stride, block);

        /*
         * Add second selected hyperslab to the selection.
         * The following elements are selected:
         *                    19 20  0 21 22
         *                     0 61  0  0  0
         *                    27 28  0 29 30
         *                    35 36 67 37 38
         *                    43 44  0 45 46
         *                     0  0  0  0  0
         * Note that two hyperslabs overlap. Common elements are:
         *                                              19 20
         *                                               0 61
         */
        start[0] = 2; start[1] = 4;
        block[0] = 1; block[1] = 1;
        stride[0] = 1; stride[1] = 1;
        count[0]  = 6; count[1]  = 5;
        fspace.selectHyperslab(H5S_SELECT_OR, count, start, stride, block);

        /*
         * Create memory dataspace.
         */
        hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the
                                                   dataset in memory when we
                                                   read selection from the
                                                   dataset on the disk */
        DataSpace mspace(MSPACE_RANK, mdim);

        /*
         * Select two hyperslabs in memory. Hyperslabs has the same
         * size and shape as the selected hyperslabs for the file dataspace.
         */
        start[0] = 0; start[1] = 0;
        block[0] = 1; block[1] = 1;
        stride[0] = 1; stride[1] = 1;
        count[0]  = 3; count[1]  = 4;
        mspace.selectHyperslab(H5S_SELECT_SET, count, start, stride, block);
        start[0] = 1; start[1] = 2;
        block[0] = 1; block[1] = 1;
        stride[0] = 1; stride[1] = 1;
        count[0]  = 6; count[1]  = 5;
        mspace.selectHyperslab(H5S_SELECT_OR, count, start, stride, block);

        /*
         * Initialize data buffer.
         */
        int matrix_out[MSPACE_DIM1][MSPACE_DIM2];
        for (i = 0; i < MSPACE_DIM1; i++)
            for (j = 0; j < MSPACE_DIM2; j++)
                matrix_out[i][j] = 0;

        /*
         * Read data back to the buffer matrix.
         */
        dataset->read(matrix_out, PredType::NATIVE_INT, mspace, fspace);

        /*
         * Display the result.  Memory dataset is:
         *
         *                    10  0 11 12  0  0  0  0  0
         *                    18  0 19 20  0 21 22  0  0
         *                     0 59  0 61  0  0  0  0  0
         *                     0  0 27 28  0 29 30  0  0
         *                     0  0 35 36 67 37 38  0  0
         *                     0  0 43 44  0 45 46  0  0
         *                     0  0  0  0  0  0  0  0  0
         *                     0  0  0  0  0  0  0  0  0
         */
        for (i=0; i < MSPACE_DIM1; i++)
        {
            for(j=0; j < MSPACE_DIM2; j++)
                cout << matrix_out[i][j] << "  ";
            cout << endl;
        }

        /*
         * Close the dataset and the file.
         */
        delete dataset;
        delete file;
   }  // end of try block

   // catch failure caused by the H5File operations
   catch( FileIException error )
   {
        error.printError();
        return -1;
   }

   // catch failure caused by the DataSet operations
   catch( DataSetIException error )
   {
        error.printError();
        return -1;
   }

   // catch failure caused by the DataSpace operations
   catch( DataSpaceIException error )
   {
        error.printError();
        return -1;
   }

   return 0;
}