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ABSTRACT
The Differential Geometry of curves is described by
means of the Frenet-Serret formulas, which cast first,
second and third order derivatives into curvature and
torsion. While in usual vector calculus these quantities
are usually considered to be scalar values, formulating
the Frenet-Serret equations in the framework of Geo-
metric Algebra exhibits that they are best described by
a bivector for the curvature and a trivector for the tor-
sion. The bivector curvature field is directly suitable for
visualization of integral curves for vector fields, pro-
viding “Frenet Ribbons” which are much richer in their
visual expressiveness than lines. The set of quantities
in the Frenet-Serret formalism allows to study numer-
ical pitfalls for computing Frenet Ribbons. We show
how to address them and demonstrate the applicabil-
ity of the technique upon a complex numerical data set
from computational fluid dynamics.
Keywords: Frenet Ribbon, pathline, streamline, com-
putational fluid dynamics, curvature, torsion

1 INTRODUCTION
Numerical algorithms ultimately need to work with co-
ordinates in the form of real numbers, thus Rn. How-
ever, the early introduction of coordinates in the math-
ematical formulation of algorithms is, though common
practice, highly problematic, as it obscures the view to
the actual mathematical properties of the involved ob-
jects. Once an abstract mathematical object has been
dismantled into numbers, even simple properties be-
come complex. For instance, Sethian formulates the
issue as “the use of a coordinate system has nothing
to do with the problem, but it has severely constrained
our options” [8] and Hermann Weyl wrote “The in-
troduction of numbers as coordinates by reference to
the particular division scheme of the one-dimensional
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open continuum is an act of violence [...]”[12]. In other
words: while the algebraic operations on real num-
bers, the one-dimensional space R, are part of com-
mon knowledge, it is a severe and unnecessary restric-
tion to reduce other spaces – in particular n-dimensional
manifolds such as used in geometry – to this set of
one-dimensional algebraic operations (which is the pro-
cess of introducing coordinates). Rather n-dimensional
manifolds may carry an algebraic structure by them-
selves which should just be used, such as demonstrated
by the coordinate-free approach of Geometric Algebra
(GA) [2] which can directly be implemented using pro-
gramming languages such as C++.

Curvature and torsion are common measures to ex-
press the properties of curves [7], as they represent
the second and third derivative. In scientific visualiza-
tion these measures serve to analyze the properties of
streamlines in vector fields, but they can also be deter-
mined directly from the vector field itself, bypassing the
process of computing an integral line [11].

Curvature and torsion are commonly introduced us-
ing vector algebra in the Euclidean space, involving
formulations based on the cross-product. This formu-
lation has several drawbacks: it hides the fact that tor-
sion is a signed quantity, changing the sign under reflec-
tion; it relies on Cartesian coordinates, obscuring how
to compute torsion with an explicit metric tensor such
as required for curved space in relativity or curvilinear
coordinates in computational fluid dynamics, and last
not least formulations based on the cross-product do
not generalize to higher dimension, which is required
when we want to extend the formalism to study time-
dependent vector fields in a four-dimensional frame-
work. While there are n-dimensional vector calculus
formulations of the Frenet-Serret formulae [7] avail-
able, GA improves the intuition of the involved objects.

The Frenet-Serret apparatus fails when the curvature
becomes zero. Extensions to the Frenet frame have
been proposed using quaternion formulations [6, 5]. In
this paper we restrict ourselves to a review of the Frenet
frame enhanced by a coordinate-free geometrical inter-
pretation which is more intuitive than quaternions or
vectors. The presented calculus is independent from the
dimension of the underlying manifold and is expected
to generalize to higher dimensions and treatment of par-
allel transport more intuitively in future work.



2 MATHEMATICAL BACKGROUND
2.1 Differential Geometry
An n-dimensional manifold M is a topological space
that locally looks like Rn. For each point there exists
a neighborhood and a mapping, called a chart {xµ} :
M→Rn. The transition from one chart {xµ} to another
chart {xµ̄} defines n coordinate transformation func-
tions {xµ}

(
{xµ̄}−1

)
: X → Y with X ,Y ⊂ Rn.If these

are differentiable k times, then the manifold is said to
be C k. Space and time is modeled in physics as a C ∞-
manifold. The laws of physics are independent of the
choice of a coordinate system, which provide just rep-
resentations of the mathematical objects.
Curves vs. Lines A curve is a mapping from a scalar
λ ∈ R, the curve parameter, to a point on a manifold:
q : R→M : λ 7→ q(λ ). The image of q in M is a line,
a one-dimensional manifold. A certain line can be de-
scribed by many curves which are distinct by different
parameterizations. To describe a curve in a certain chart
{xµ} a coordinate function is used to extract a function
for each coordinate of the chart:

qµ : R → R
λ → qµ(λ ) = xµ(q(λ ))≡ xµ ◦q(λ ) (1)

This set of n functions qµ(λ ) is the representation of
the curve q in a coordinate system.
Tangential Vectors A tangential vector v may be un-
derstood as a small displacement of neighboring points
on a curve, where the components of the tangent vector
are given by vµ = dqµ(λ )/dλ . Given a differentiable
function f : M→ R we may evaluate it along the curve
f (q(λ )) : R→ R and find the directional derivative of
f along q in a chart {xµ} as

d
dλ

f (q(λ )) =
dqµ

dλ

∂ f
∂xµ

(2)

We may thus identify the tangential vector v with the
derivation operation d/dλ , which is an interpretation
independent of any coordinate system:

v≡ d
dλ

=
dqµ

dλ

∂

∂xµ
=: q′(λ ) (3)

The set of all derivatives ∂

∂xµ in all directions at a point
p defines the tangential space Tp(M), which is a vector
space (in contrast to M, which in general is not).
Wedge (Outer) Product The wedge product is de-
noted by the symbol “∧” and was introduced by Her-
mann Grassmann in the 19th century. It allows to
construct a vector space Λ2(Tp) from the tangential
space Tp by introducing the anti-symmetric (or wedge)
product ∧ : Tp×Tp → Λ2(Tp) with u,v ∈ Tp, whereby
u ∧ v = −v ∧ u. Higher orders of the form Λk(Tp)
with k ≤ dim(M) consist of so called k-vectors with
scalars as 0-vectors, vectors as 1-vectors, bivectors as
2-vectors, and so forth.

Dot (Inner) Product The metric tensor field is a scalar-
valued symmetric bilinear function g operating on tan-
gential vectors, given at each point p ∈M:

g : Tp(M)×Tp(M)→ R : u,v 7→ gp(u,v) (4)

The metric tensor field allows to define the inner (“dot”)
product u · v := gp(u,v) of two tangential vectors. The
dot symbol “·” is used by convention as a shortcut, but
implying involvement of the metric tensor which needs
to be explicitly specified for a manifold. In contrast,
the wedge product is defined on the tangential space
without any additional structure.
Arc Length and Curve Tangent Vector Arc length
s is defined as the length of integrated curve segments

s(λ ) :=
λ∫
0
|q′( λ̃ )| dλ̃ with |v| =

√
(gp(v,v)). Deriva-

tion by the arc length will be denoted by dots:

v̇ :=
d
ds

v≡ dλ

ds
d

dλ
v = λ̇ v′ . (5)

In general, derivation along a curve requires to employ
a tangential transport and affine connection ∇. It fol-
lows from (2.1) by derivation on both sides: ds

dλ
= |q′|,

which allows to express the derivation by arc length s
via the derivation by the curve parameter:

v̇ =
1
|q′|

v′ or
d
ds

=
dλ

ds
d

dλ
=

1
|q′|

d
dλ

(6)

Specifically it follows that the tangential vector q̇ with
respect to arc length - defined as the tangent vector t -
is a unit vector |q̇|= 1 due to t := q̇ = 1

|q′| q′.

2.2 Geometric Algebra
Geometric Algebra is the generalization of vector cal-
culus to form a complete set of algebraic operations
on tangential vectors and k-vectors. Its central con-
cept is the introduction of the invertible geometric prod-
uct. Given two (tangential) vectors u,v and a metric
g, the requirements on the geometric product uv are to
be associative, left- and right-distributive and to fulfill
u2 = uu = g(u,u). These postulates lead to the ge-
ometric product as uv = u · v + u∧ v , which is now
invertible.It is important to keep in mind that the ge-
ometric product is not commutative, thus in general
uv 6= vu and one needs to distinguish among left- and
right-multiplication. As the geometric product sums a
scalar value and a bivector it operates no longer on tan-
gential vectors alone, but on the 2n-dimensional space
of multivectors V ∈

⊕n
k=0 Λk(Tp)

Inner and Outer Product in GA Expressing the inner
and outer product via the geometric product may well
lead to easier expressions since the geometric product
is invertible and associative. For 1-vectors the inner



product is given by the symmetric part of the geometric
product, the outer product as the anti-symmetric part:

u · v≡ 1
2
(uv+ vu) , u∧ v≡ 1

2
(uv− vu) . (7)

Another useful operator, the Hodge-star operator ?,
maps k-multivectors to (n− k)-vectors via the product
with a pseudoscalar (an n-multivector) Ω ∈ Λn(Tp).

? : Λ
k(Tp)→ Λ

n−k(Tp) : V 7→ΩV . (8)

It allows to identify vectors and bivectors in three-
dimensional space. For instance, the cross product in
three-dimensional vector calculus corresponds to

u× v≡ ?(u∧ v) , (9)

the difference being that “×” is only defined in 3D,
whereas the right side works in arbitrary dimensions.
Vector Projections Using the geometric product on
two arbitrary vectors u,v the expression wuw with a unit
vector w = v/|v| yields the vector u as reflected at the
vector v. Adding the reflected vector wuw to u yields
the component of the vector u that is parallel to w:

u‖v =
1
2

(
u+

vuv
|v|2

)
, (10)

while subtraction yields the perpendicular component

u⊥v =
1
2

(
u− vuv
|v|2

)
, (11)

where evidently u = u‖+ u⊥. In GA (11) is called a
rejection operation. Both components correspond to the
inner and outer product (7) when multiplied with the
inverse vector v−1 ≡ v/|v|2:

u‖v =
(uv+ vu)

2
v
|v|2

= (u · v)v−1 = v−1(u · v) ,

(12)

u⊥v =
(uv− vu)

2
v
|v|2

= (u∧ v)v−1 =−v−1(u∧ v) .

(13)

Relation to Vector Calculus In 3D Euclidean space,
we get the orthogonal component via the cross-product:

u⊥v =
v× (u× v)

v2 (14)

Using the vector triple product formula relating cross
and dot product a× (b× c) = b(a · c)− c(a ·b) we see

u⊥v =
u(v · v)− v(u · v)

v2 = u− (u · v)v/v2 ≡ u−u‖v.
(15)

Derivative of a Unit Vector The derivative d/dλ ,
denoted by a prime as shortcut in the following expres-
sions, of an (arbitrary) unit vector field v/|v| along a
curve yields a vector field that is orthogonal to the orig-
inal vector field v:

d
dλ

v
|v|

=
|v| d

dλ
v− v d

dλ
|v|

|v|2
(16)

d
dλ

v2 =
d

dλ
vv = vv′+ v′v = 2v · v′ (17)

d
dλ
|v|= d

dλ

√
v2 =

v · v′

|v|
(18)

therefore

d
dλ

v
|v|

=
1

2|v|

(
v′− vv′v
|v|2

)
(11)
= v′⊥v/|v|

≡ (v′∧ v)v−1

|v|
≡ (v′∧ v)v

|v|3

(19)

i.e. the derivative of a unit vector field v along a curve
is perpendicular to the original field. A visualization of
this behavior is shown later in Fig. 5. The same fact is
evident from v · d

dλ

v
|v| = 0, noticing eqn. (18) becomes

zero for a unit vector |v|= 1,
Consecutively applying the operations of derivation

and normalization on the tangential vectors of a curve
leads to a systematic scheme allowing to study a curve’s
properties, known as the Frenet-Serret formulas.

2.3 Frenet-Serret Formulae
Curvature of a Curve The curvature κ of a curve
is defined as the magnitude of the rate of change of the
unit tangent vector twith respect to arc length:

κ := |ṫ|=
∣∣∣∣ d
ds

t
∣∣∣∣≡ 1
|q′|
|t ′| (20)

The derivative of the tangent vector is perpendicular to
q′ by means of (19):

t ′ =
q′′⊥q′

|q′|
≡ (q′′∧q′)q′

|q′|3
. (21)

The curvature can thus be seen as the rejection (per-
pendicular component) of the second derivative q′′ =
d/ds q′ by the velocity q′ normalized by the speed:

κ =

∣∣∣∣q′′⊥q′

|q′|2

∣∣∣∣= |(q′′∧q′)q′|
|q′|4

(22)

By construction the curvature κ is independent of the
parameterization and is a measure that only depends on
the line, as in (20) we differentiate with respect to arc
length, not the curve parameter.



Relation to Vector Calculus By means of (14) we
may express t ′ in (21), and thus ṫ, as a cross product,

ṫ =
q′′⊥q′

|q′|2
=

(q′′∧q′)q′

|q′|4
=

q′× (q′′×q′)
|q′|4

(23)

such that via |a× (b×a)|= |a| |b×a| we get the com-
monly shown formula for curvature as

κ =
|q′× (q′′×q′) |

|q′|4
=
|q′| |q′′×q′|
|q′|4

=
|q′′×q′|
|q′|3

. (24)

Normal Vector and Osculating Bivector Derivation
and normalization of the tangential vector t = q′/|q′|
yields the normal unit vector, a quantity independent of
the curve parameterization:

n :=
t ′

|t ′|
≡ ṫ
|ṫ|

(20)
≡ 1

κ
ṫ

(6)
=

1
κ

1
|q′|

t ′ (25)

By definition of the curvature (20) we trivially arrive at
the first Frenet-Serret equation:

t ′ = |t ′| n = |q′| κ n or ṫ = κ n (26)

The tangent and normal vector define the osculating
plane of the curve, called the binormal vector t× n in
vector calculus. It corresponds to a bivector in Geomet-
ric Algebra (t ·n = 0):

b := tn = t ∧n =−n∧ t =−nt . (27)

This “osculating bivector” b is a unit bivector fulfilling
b2 =−1. The associated “curvature bivector” κb= t∧ ṫ
fulfills (t ∧ ṫ)2 =−κ2.
Relation to Vector Calculus The normal vector ex-
pressed in derivatives of the curve q becomes in Eu-
clidean vector calculus, using (23) and (24):

n =
q′× (q′′×q′)
|q′| |q′′×q′|

(28)

Torsion Trivector The change of normal vector yields
the form of a unit vector derivative (19):

n′ =
t ′′⊥t ′

|t ′|
≡ (t ′′∧ t ′) t ′−1

|t ′|
(29)

To compute the change of the osculating bivector, we
utilize the Leibniz rule on (27), notice that t ′ and n are
parallel by eqn. (26) and reorder terms to find

ḃ =
1
|q′|

(
t ′∧n︸︷︷︸

0

+t ∧n′
)
=

1
|q′|

t ∧ (t ′′∧ t ′) t ′−1

|t ′|

=− 1
|q′|

t ∧ t ′∧ t ′′

|t ′|2︸ ︷︷ ︸
=:τ

t ′/|t ′|︸ ︷︷ ︸
n

=− t ∧ ṫ ∧ ẗ
κ2 n =:−τn

(30)

This is the third Frenet-Serret equation,

b′ =−τ n |q′| or ḃ =−τ n (31)

which in this formulation relates the change of the os-
culating bivector to the normal vector via the torsion
trivector τ . With the geometric product being invertible
we can easily express n by means of b by noting t−1 = t
due to |t|= 1, finding n = t−1b = tb. Derivation yields

ṅ = ṫb+ tḃ = κn b− t τn (32)

and using nb = ntn =−nnt =−t with tτ = τ t provides
via tn = b the second Frenet-Serret equation:

ṅ =−κ t− τ b (33)

Here b is a bivector (describing curvature) and τ is a
trivector (describing torsion). It is evident that τ is not
a scalar, but a pseudo-scalar - it changes sign under re-
flection: a helix with positive torsion seen in a mirror
exhibits negative torsion.
Relation to Vector Calculus In a chart the torsion
trivector will be expressed as a three-indexed object
τ = τi jk ∂i ∧ ∂ j ∧ ∂k . These are 2n components, but in
three dimensional Euclidean space they reduce to a sin-
gle number and the torsion trivector can be associated
with a scalar |τ| by means of the hodge-star operator
as ?τ = |τ|Ω. It expresses the torsion trivector relative
to an orientation Ω describing the left-handedness or
right-handedness of the chosen coordinate system. We
can express eqn. (33) through the vector dual~b to the
bivector b = ?~b = Ω~b, which due to Ω2 =−1 yields the
usual Frenet-Serret equation for vectors:

ṅ =−κ t−|τ|Ω Ω~b =−κ t + |τ|~b . (34)

3 VISUALIZING CURVES
3.1 Integral Curves
Given a vector field v : M→ T (M) : q 7→ v(q) a curve
q(λ ) is an integral curve on this vector field if it fulfills
d

dλ
q = v

(
q(λ )

)
. The properties of the integral curve

are determined by the vector field itself. Curvature and
torsion can be computed directly as curvature and tor-
sion fields from the vector field [11] based on the vector
field’s Jacobian. As the previous has shown, these are
actually bivector and trivector fields, not scalar fields.

3.2 Verification Vector Field
Verification of computational methods on behalf of an-
alytical test data sets is of utmost importance. Here,
a vector field is used for verifying the computational
methods and is constructed to yield clearly defined re-
sults (stream lines) in the form of circles: v = ∂ϕ =

(−y,x,0)/
√

x2 + y2. To check the independence of the



curve parameterization we provide a non-constant ve-
locity depending on the angle relative to the coordinate
system: v=

[
1+Asin

(
ϕ arctan y

x

)]
∂ϕ with A an ampli-

tude of the modification and ϕ a modification factor for
the angular dependency. With A = 0.9 and ϕ = 1.0 we
get a vector field that is nearly zero for y< 0 and is large
up to |v|= 1.9 for y > 0, as show in Fig. 1. The integral
lines of this vector field are closed circles. To simulate
data stemming from a numerical simulation the vector
field is sampled to uniformly spaced locations and in-
terpolated to arbitrary locations where the integral line
passes through.

Figure 1: 2D slice of an axial vector field with non-
constant (but non-vanishing) velocity sampled on a grid
of 163 points (left image). The integral lines of this
vector field are closed circles (right image) of constant
curvature, with curvature increasing toward the center.

3.3 Fields for Visual Analysis
The differential geometric treatment of curves system-
atically leads to a set of fields that allow to study the
properties of a curve. Some of these fields are lo-
cal quantities, i.e. they can be computed from the
properties of a curve at each point and its neighbor-
hood, but are otherwise independent of global quan-
tities which depend on the entire shape of the curve.
Both local and global quantities are of interest. Some
of them are dependent on the parameterization and oth-
ers are pure line quantities which do no change under
re-parameterization.

1. Proper time: T =
∫

1/|q̇(λ )|dλ

2. Arc length: s =
∫

ds

3. Velocity: q′

4. Coordinate Acceleration: q′′

5. Energy: E = |q′|2/2

6. Tangential vector: t = q′/|q′|

7. Normal vector: n = t ′/|t ′|

8. Osculating bivector: b = tn

9. Curvature: κ = |ṫ|= |(q′′∧q′)q′|/|q′|4

10. Curvature bivector κb = t ∧ ṫ

11. Torsion trivector: τ = (t ∧ ṫ ∧ ẗ)/κ2

12. Torsion: |τ|= |ḃ|= |t ∧ ṫ ∧ ẗ|/κ2

These quantities will be of type scalar, vector, bivector
and trivector, each of these types requiring a different
kind of visualization method along the curve. Scalar
fields are commonly displayed via color-coding, vec-
tor fields via arrow icons. With bivectors and trivec-
tors being elements of Geometric Algebra beyond the
usual vector calculus, there are no common visualiza-
tion methods for these types of fields. However, Frenet
Ribbons, discussed in 3.4, provide a direct visualization
of the osculating bivector field.
Scalar Fields The set of available scalar fields from
the above set can be organized - for planar curves (zero
torsion) - with respect to their properties of being local
or global and their dependence on the curve parameter-
ization (line quantity vs. curve quantity):(

T s
E κ

)
=̂

(
global/curve global/line
local/curve local/line

)
(35)

As demonstrated in Fig. 2, displaying these four quanti-
ties along a line provides four different views with com-
plementary information. If we modify the input vec-
tor field by an arbitrary modulation of its amplitude,
then the right column of Fig. 2 will remain unchanged,
while only the left column will undergo changes. On
the other hand, the lower row will be independent of
the placement of integral seed points. Mapping proper

(a) Proper Time- T (b) Arc Length - s

(c) Energy - E (d) Curvature - κ

Figure 2: Visualization matrix of scalar fields on a curve:
proper time T , arc length s, energy E and curvature κ . Upper
row are global (integral) quantities, right column are indepen-
dent of parameterization.

time to colors provides a notion of the time that a par-
ticle requires to reach a certain point on this trajectory.



A colormap that uses gradient steps is furthermore able
to emphasize the increments of proper time along the
line, even in mere grayscale depiction. It provides a vi-
sual indication of the velocity and therefore the original
vector field. Particles are traveling slower in the lower

(a) Value→ color hue (b) Value→ intensity steps

Figure 3: Visualizing a dense set of curves: Proper time with
color map, showing advancement of time along the curves,
and proper time with “zebra” colormap, depicting the velocity
along the curve.

section of Fig. 3, which is conveyed better by the cho-
sen gradient colorization. Fig. 4 shows the scalar fields
with the "zebra" map applied.

(a) T (b) s (c) E (d) κ

Figure 4: “Zebra” colorization scheme applied to the
matrix of scalar fields (Fig. 2) for a dense set of curves:
proper time, arc length, energy, curvature.

Vector Fields The velocity q′ along a curve is supposed
to be identical with the value of a vector field v(q(s)) if
q is an integral curve. For vector fields given on dis-
crete points its visualization may provide insight into
the behavior of the interpolation algorithm, as discussed
in 3.5, which in particular is non-trivial for curvilinear
grids [9] [4] [10].

Same as with scalar fields, we can distinguish among
curve and line quantities based on the dependency of
a vector field on the curve parameterization. Since all
vector fields “live” in the tangential space Tp(M), they
are local by nature. The notion of global vs. local is
hereby replaced by order of derivation, firstly consider-
ing first and second order:(

q′ t
q′′ n

)
=̂

(
1st/curve 1st/line
2nd/curve 2nd/line

)
(36)

The corresponding vector fields are shown in Fig. 5.
Note that the acceleration q′′, Fig. 5(c) is not normal
to the velocity q′, Fig. 5(a), but lays in the same plane
as the normal vectors n, Fig. 5(d). We can thus see
Fig. 5 as a direct visualization of eqn. (21) which states
that the direction of the normal vector is given by the

projection of the acceleration on the velocity n ∝ q′′⊥q′ .

(a) Velocity q′ (b) Tangents t = q′/|q′|

(c) Acceleration q′′ (d) Normals n = t ′/|t ′|

Figure 5: Visualization matrix of vector fields on a curve:
velocity and acceleration (left column) depend on the curve’s
parameterization, tangents and normals (right column) are
pure geometrical quantities. Upper row includes first order
derivatives of the curve, lower row is based on second order
derivations.

3.4 Visualizing the Curvature Bivector:
Frenet Ribbons

A Frenet Ribbonis a direct visualization (Fig. 6) of the
curvature bivector field κ b = t ∧ ṫ along a curve q.
The Frenet Ribbon is the surface generated by sweep-
ing the tangential derivative vector t ′ along the curve
q. Its width depicts the curvature κ = |ṫ|, the location
of the surface relative to the curve q depicts the sign of
the curvature, since osculating plane is described by the
bivector t ∧ ṫ =−ṫ ∧ t.

(a) Frenet Ribbon (b) Ribbon and normals

Figure 6: A Frenet Ribbon is generated by sweeping the
curve normal vectors along the curve. Colorization by energy.

Using modern graphics hardware, Frenet Ribbons
are very suitable to be implemented using geometry
shaders which allow generating the actual geometry
completely on the GPU while just providing the line
and normal vector information for each vertex. Con-
sequently rendering Frenet Ribbons is about as fast as



Figure 7: Accuracy and performance of integration methods:
Euler integration with stepsize 1.0, 180 steps; stepsize 0.2,
720 steps; 8th order Runge-Kutta (DOP853), 40 steps.

drawing line primitives unless there occur huge poly-
gons to be rendered due to locations of very high cur-
vature. Usually rendering is possible in realtime with at
least 30fps using a decent modern graphics card which
supports geometry shaders.

3.5 Numerics
Integration Method The forward Euler method is
the most simple method to advance a point at a curve
via q(s+∆) = q(s)+∆ v(q(s)) for a constant step size
∆. It is known to always gives overshoots of the curve,
which can be cured somewhat by reducing the step-
size ∆. But it is never able to achieve the same accu-
racy as an higher order integration schemes such as the
DOP853 Runge-Kutta scheme of order 8th with adap-
tive step size control [3], as demonstrated in Fig. 7. In
theory, all line and curve quantities are supposed to be
independent of the chosen method. In practice, they
will differ.
Interpolation Scheme With vector field data given
at an equidistant spatial sampling (“uniform grid”) it is
required to interpolate grid points to a smooth location.
With linear interpolation the discretized manifold is
C 1, first order derivatives become discontinuous which
shows up visibly in the curvature (Fig. 8(c)). Cubic in-
terpolation via Catmull-Rom splines yields a somewhat
smoother curvature, Fig. 8(b), yet artifacts are still vis-
ible. While Euler integration yields inaccurate results,

(a) analytic (b) bi/tri-cubic (c) bi/tri-linear

(d) analytic (e) bi/tri-cubic (f) bi/tri-linear

Figure 8: Curvature on Euler (upper row) and DOP853 inte-
gration (lower row).

the DOP853 integrator exhibits a remarkable behavior
when visualization curvature (Fig. 8): it apparently ap-
proaches the curve by a combination of “undershoot-
ing” and “overshooting”, which is more sensitive to the
interpolation method.
Discretization Resolution The sampling density of
an analytic function influences the accuracy of an in-
tegration scheme. As depicted in Fig. 9, increasing
the grid resolution does smooth out the curvature as
computed by the Euler scheme. For the more accurate
DOP853 scheme however the “meandering” behavior
as observed in Fig. 8 remains, just on a smaller scale.

(a) Euler, 163 (b) Euler, 643 (c) DOP, 163 (d) DOP, 643

Figure 9: Dependency of Frenet Ribbons and curvature on
grid resolution.

Differentiation Scheme We implemented curvature
computation directly by means of the definition (20)
κ = |ṫ|. Given a discrete set of N vertices along a line
with pi ∈M, vi ∈ Tpi(M) for i ∈ [0,N), we arrive at

t− := vi−1/|vi−1| ∆− := |pi− pi−1|
t0 := vi/|vi|

t+ := vi+1/|vi+1| ∆+ := |pi+1− pi|

ṫ− :=
t0− t−

∆−
ṫ+ :=

t+− t0
∆+

ṫ =
1
2
(ṫ−+ ṫ+) ⇒ κ = |ṫ|

This is a second order scheme for differentiation, where
division by the arc length ∆ of a finite curve segment
yields ṫ (not t ′), taking into account non-equidistant step
sizes between succeeding points on the line. In the spe-
cial case of constant step size, such as with Euler inte-
gration, the term t0 will be discarded. When using the
adaptive DOP853 scheme this symmetric formula us-
ing the tangential vector at i− 1 and i+ 1 is important
to yield smooth results. Boundary conditions (i = 0 and
i = N−1) need to be treated differently. The computa-
tion of the torsion trivector is a direct implementation of
eqn. (30), requiring one more numerical differentiation
of t ′:

ẗ :=
ṫ+− ṫ−

∆++∆−
⇒ τ =

t0∧ ṫ ∧ ẗ
κ2 (37)

The method applied to a numerical dataset stemming
from a large-scale computational fluid dynamic simula-
tion is demonstrated in Fig. 10, showing Frenet Ribbons
exposing the curvature bivector and torsion.

Curvature and torsion of pathlines are suitable indi-
cators of the mixing quality of fluids [1]. Within a large



numerical dataset their depiction via Frenet Ribbons is
useful for data mining purposes as slight deviations in
curvature and torsion show up prominently.

(a) Frenet Ribbons with Color-Encoded Curvature

(b) Frenet Ribbons with Color-Encoded Torsion

Figure 10: Frenet Ribbons in a numerical vector field. Rib-
bons color-encoded by curvature or torsion, lines by proper
time with gradient map.

4 CONCLUSION
In this article we have reviewed the Frenet-Serret equa-
tions describing the Differential Geometry of curves in
the formalism of Geometric Algebra. This leads to a
more intuitive formulation of curvature as a bivector
and torsion as a trivector, explaining sign changes un-
der reflection. The formalism is valid also in higher
dimensional spaces, thereby generalizing vector alge-
bra employing cross-products and quaternion formula-
tions. The apparatus is applied to the numerical com-
putation of integral curves in discretized vector fields
and investigated for its dependency on numerical arti-
fact such as interpolation scheme, integration method,
sampling resolution and differentiation scheme. A real-
world example is demonstrated on behalf of a dataset
from computational fluid dynamics where Frenet Rib-
bons visualize the trajectories of test particles, exhibit-
ing curvature and torsion.
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