Fiberbundle-Based Visualization of a Stir Tank Fluid

Benger Werner, Ritter Marcel, Archaya Sumanta, Roy Somnath, Jijao Feng

1. Data to be Visualized

2. Fiber Bundle Data Model

- Grid and Field Objects
- 3. Streamline Visualization in Vish
 - Module Separation
 - Using Grid Objects
- 4. Conclusion

1. Data to be Visualized 1/2

The Stirtank Dataset

- Department of Mechanical Engineering (LSU)
 - Sumanta Acharya
 - Somnath Roy
- 2088 curvilinear blocks
- Vectorfield describing velocity
- Scalarfield describing pressure

Streamlines

- Common tool to visualize vector fields such as the stirtank velocity field

- More complex in case of curvilinear multiblock data
- What data structures should be used for the data?

- Data model based on the theory of Fiber Bundles
 - Identifies characteristics of scientific data
 - Consistent data organization
 - Separating Base Spaces (Grid) and Fibers (Fields)

2. Fiber Bundle Data Model 2/4

- Grid object:
 - Manifold describing the base space
 - Properties:
 - Topology
 - Refinement level
 - Coordinate representation
 - Vertex positions in representation

• Internal data structure (example stirtank)

- Directory structure

2. Fiber Bundle Data Model 4/4

• The user only deals with

- Bundles
- Grids (parameterized e.g. with time)
- Fields

3. Streamline Visualization 1/6

Streamline-modules and Dataflow in VISH

- all-in-one module solution was developed first
- module separation lead to better code reusability

- Streamline-modules:
 - Defining seed points
 - output a Grid
 - Compute streamlines
 - input a Grid
 - output a Grid
 - Render line grids
 - input a Grid

• Defining an Input Grid for seeding streamlines

- first module created point Grids on defined geometries (like points on a line or circle)
- idea of copying and transforming points based on other grid points, similar to the mathematical convolution operation
 -> GridConvolver (a pure Grid operation on the base space)
- led to some operations purely on Grid objects

3. Streamline Visualization 3/6

• Gridconvolver:

3. Streamline Visualization 4/6

- Using the Input Grid
 - opened the possibility to use any other Grids for seeding, such as an isosurface of pressure
 - without any new code development

3. Streamline Visualization 4/6

- Using the Input Grid
 - opened the possibility to use any other Grids for seeding, such as an isosurface of pressure
 - without any new code development

3. Streamline Visualization 5/6

- Streamlines seeded by isosurface of pressure helps to find reagons of vorticity in the velocity field
- Streamlines colored by magnitude

3. Streamline Visualization 6/6

- Streamlines seeded by isosurface of pressure helps to find reagons of vorticity in the velocity field
- Streamlines colored by length

Using the software framework Vish

- simplified software development by using its infrastructure and features
- ensures that scientists really can use the developed modules in the 3D visualization application
- see: http://sciviz.cct.lsu.edu/projects/vish/

- Applying the Fiber Bundle Data Model for streamline visualization
 - revealed unexpected possibilities
 - made the approach very flexibly and reusable
 - up to now all data we encountered could be mapped into the Fiber Bundle Data Model

4. Conclusion 3/3

• Grids used in the vishualization:

Stirtank Grid: curvilinear multiblocks hexahedral cells

Streamline Grid: line grids

Seeding Grid: point grid without connectivity Seeding Grid: iso surface triangular surface

