Beyond the Visualization Pipeline:
The Visualization Cascade

Werner Benger! and Georg Ritter? and

Marcel Ritter'® and Wolfram Schoor?
!Center for Computation and Technology, Louisiana State University, USA

2Institute for Astro- and Particle Physics, University of Innsbruck
3Institute of Computer Science, University of Innsbruck, Austria
4Fraunhofer Institute for Factory Operation and Automation
werner@cct.lsu.edu, georg.ritter@uibk.ac.at,
marcel@cct.lsu.edu, Wolfram.Schoor@iff.fraunhofer.de

Abstract

The concept of a pipeline has become a quite common way of thinking
about the process of visualizing data. In this article we discuss the inher-
ent limits of this concept and argue for the need to expand this concept
for achieving higher performance and convenience to the end user. While
the traditional model of a visualization pipeline describes the execution
of some data flow, it is most suitable for a static data-set. However for
time-dependent data (e.g.) we intend visualizations to be as fast in time
as they are in space. The pipeline model does not recognize similarity and
repetition of operations which is essential to achieve the desired perfor-
mance. The pipeline model thus needs to be extended to efficiently cover
multiple traversals and caching of intermediate results, which we call the
Visualization Cascade. It will be demonstrated in practice within its im-
plementation in the VISH visualization environment.

1 Introduction

The process of visualizing data begins with the source data containing the in-
formation to be visualized and ends, finally, with a derived image representing
the data. To arrive at the image the data needs processing, like being searched
or filtered, depending on the nature of the data and the analysis requirements.
It then must be mapped to graphical entities that are subsequently rendered
into an image. In [Haber & McNabb, 1990] the authors identify and refine
the general operations data undergoes in the process of creating visualization.
The data flows in a pipeline through a chain of stages, as depicted in Fig-
ure 1, and finally, results in a representing image. The pipelined model they
present, is known as the Haber-McNabb model of the visualization pipeline and

has been a widely successful concept for the design of visualization software.
Several well known software packages have been built upon this idea, exam-
ples include AVS [Upson et al., 1989], VTK [Schroeder et al., 1997], IRIS Ex-
plorer [Foulser, 1995], OpenDX [Treinish, 1997] (for a more complete list see
[A.A. Ahmed, 2007]).

Enrichment/

Enhancement Viz Mapping Rendering

Dataflow -

Figure 1: Visualization Pipeline: Data flows through the pipeline while opera-
tors modify the stream. They extract, filter, map and render data. Finally the
pipeline outputs is an image or image stream.

While trying to understand the data through exploratory visualization, as
outlined in [Upson et al., 1989, Card et al., 1999], a flexible and easy to use
mechanism to enter the operation on the data into the software is needed. Ex-
ploring and trying to understand as much as possible from the data by inspect-
ing them, includes making frequent changes to parameters of the visualization,
sometimes even to the parameters or models used to create the data. Being able
to easily change and adapt the parameters and, in addition, derive the visualiza-
tion results fast, is of great importance as it helps to decrease the time needed
for one investigative cycle. For some data, features might only become visible if
it is possible to navigate interactively inside the parameter space.

The pipeline concept has been found to be well suited and intuitive to under-
stand when used to represent the flow of data in a user interface. The user can
graphically construct a visualization pipeline by interconnecting different stages
through attaching a pipeline to nodes. An early example of such a graphically
programming interface has been implemented in ConMan [Haeberli, 1988], more
modern examples include the Spiegel framework [Bischof et al., 2006], or the
graphical user interface of LabVIEW [Johnson & Jennings, 2001] in which a
data stream, mainly originating from measurements, can be connected to pro-
cessing nodes or the gstreamer framework [Black et al., 2002] in which multi-

media data is handled this way.

Once the structure of the pipeline has been set up, it needs to be executed.
Different schemes have been implemented to derive the final image. When us-
ing implicit execution, as applied in VTK [Schroeder et al., 1997], data is time
stamped and only “upstream” nodes are executed, if demanded. Explicit execu-
tion, as used in the IRIS Explorer [Foulser, 1995], relies on external management
of the data processing nodes to decide which needs re-computation.

The flow of data is initiated in two principal ways. In the “pull” case, a
downstream receiver requests the data from an “upstream” node. In a “push”
case, the “upstream” node would forward the data to the next stage in the
pipeline as soon as it is available. Also a mixed version can be implemented, as
they are independent.

If we want achieve full interactivity in the visualization of large data-sets
we find that the current design of pipelines and their execution models are not
well suited to meet the requirements. Response times to changes of parameters
are not fast enough, as data travels too slowly through the whole pipeline to
reach an interactive frame rate, as described in [Shen, 2006] for the case of time
dependent data.

Not only for a change in the time parameter, but for any change made
to a parameter of the visualization, the whole visualization pipeline has to be
executed for every single frame. As this often exceeds the time required for
an interactive frame rate, a common solution is to apply off-line rendering.
Frames of an animation sequence are rendered for later viewing, but interactively
exploring the data would be more desirable and would also possibly increase the
chance of gaining further understanding of for example spatial-temporal features
of the data.

Working toward the visualization challenges one (“Make the spatial and tem-
poral resolution of visual displays indistinguishable from physical reality.”) and
four (“Optimize physical resources used to perform visual interactions.”), as de-
scribed in [Hibbard, 1999] and incorporating the user wishes for interactivity,
here we present an extended pipeline model that utilizes the structure of mod-
ern graphics hardware to minimize the time needed to derive the final image.
We propose that, by introducing a flexible caching mechanism, it is possible
to increase re-usage of already processed data, especially in between different
pipelines constructed for different parameter sets. In combination with a data
storage model and utilizing GPU memory, full interactivity on a data-set of the
size of 17 GB, containing 1.6 million points in 200 time steps [Benger, 2008],
has been achieved.

2 The Visualization Cascade

The major drawback of the concept of the visualization pipeline is that it does
not talk about caching of results. If an operation similar to an earlier is to be
repeated, we would not want to have the entire pipeline to be traversed again.
Only those sections that have changed shall be re-computed. A typical usage

scenario is running an animation of time-dependent data. The “conventional
way” is to load each time step, pump it through the visualization pipeline to
create a pixel frame for each time step, and then eventually watch the evolution
of the data as a movie. Many features of a dynamic data-set are only appreciated
when viewed at interactive speeds of e.g. 30 frames per second, but usually
the traversal of the entire visualization pipeline is much slower than 1/30th of
second.

Time
< Data Source > < DataSource > < DataSource > < Data Source >
Time=1.2| [| Time=1.3| [| Time=1.4| [| Time=1.5| []
v v A 4 A 4
Derived Derived Derived Derived
Data Data Data Data
o
]
g L1 L] L] L]
a_h v v A 4 A 4
2 Abstract Abstract Abstract Abstract
Viz Object Viz Object Viz Object Viz Object
v ‘} v V}

Figure 2: Exploring a full parameter space of some data-set requires parallel
traversal of the data flow - resulting in a cascade rather than a single pipeline
traversed repeatedly.

While speeding up the initial traversal of the pipeline might just be impos-
sible, results of previously computed operations can be cached up to available
RAM. We may consider the rendering of an animation as the execution of a se-
quence of multiple parallel visualization pipelines. The execution nodes of each

pipeline reside on the same level. At each such node we might need to cache
some result of a previous operation. We may think of such a system as a cascade
of data flowing down a water fall, in many parallel ways and intermediate levels
where data reside to be cached.

Furthermore, data may eventually flow from one stream to another one,
i.e. the “visualization pipeline” from one time frame may employ parts of a
visualization pipeline from another time frame as well. Such may be the case
when fusing data-sets given at different time intervals, for instance a data-set
that is sampled at T=0.0, T=10.0 and another one at T=0.0, 1.0, 2.0, etc. If
interpolation in time is not requested but rather the “most recent” timestep
should be displayed, then at T=1.0 the coarse data-set at T=0.0 would be used,
which does not require traversal of the viz pipeline for the coarse data-set all
they way up to its source. A new computation will only be required when both
data streams from the two pipelines will merge.

We may consider “time” as a parameter that is orthogonal to the flow of the
visualization pipeline. It rather parameterizes the visualization pipeline (a lin-
ear, one-dimensional data flow) and unfolds it into multiple instances, thereby
creating the visualization cascade (a two-dimensional flow of data). At each
cascade level, there will be the essential decision when to re-execute the com-
putation or to re-use existing data. This depends on additional parameters that
have been changed since the last traversal. If the data at each level depend on
“time” only, then there is no need for re-computation at all once data exist there
already. However, there may be other parameters as well, such as depending on
user interaction. For instance, when inspecting some time-dependent 3D data
volume, the user-defined threshold level of an isosurface, or the range and color
values of a colormap during volume rendering. In both cases, there is no need to
reload data from disk when repeating an animation over a previous time range.
However, in the case of the isosurface display, the computation of the geometry
has to be re-executed. In the case of the dynamic volume rendering, there is not
even a need to reload data on the graphics card, but only some texture maps
might need to be updated when changing the colors.

While some parameters in the visualization cascade might not require re-
questing data up from the source, others might. For instance, changing the
range of a volume rendering colormap or applying another filter (e.g. a non-
linear filter) may require operating directly on the original data, and thus need
to reload data and full pipeline traversal. We therefore have to distinguish be-
tween two classes of parameters: those that require re-computation, and those
that do not. The efficiency of the visualization cascade will depend on proper
choices at each node, to avoid unnecessary computation but still perform the
essential ones. We will discuss our implementation in the next sections.

2.1 Data Result Caching

Each node within a visualization pipeline is an operation on the data stream. In
an object-oriented environment, it is usually an object with data structures and
member functions. It is straightforward and common use to store computational

data in here. Using this associated node-local space as cache for intermediate
results is an option, but not an optimal one.

‘ Node Cache
Derived Data

|w)
ISR - Node Cache
)
2 Abstract
Viz Object
Node Cache

Figure 3: Caching of intermediate results of the data flow through a visualization
pipeline allows to avoid repeating previously performed computations. Instead,
final results may be retrieved from intermediate levels of the visualization cas-
cade.

In our case we utlize Vish [Benger et al., 2007] as visualization environ-
ment, which allows using a so-called fiber bundle data model [Benger, 2004,
Benger et al., 2006, Benger, 2008]. This model is a framework to handle a wide
class of data for scientific visualization within the same structures. It intrinsi-
cally supports time dependency and thereby allows to store intermediate results
within this data model (a data structure available at the data source) rather
then the computational objects themselves.

This approach to store intermediate results directly at the data source (the
so-called “Bundle”) as extension to the source comes with various benefits:

1. The computational nodes are kept completely procedural; they never store
any data itself, and may thus be utilized for any kind of data operation
even stemming from different sources. Data are merely seen as parameters
to the procedure, but not actually “transported” into the object.

2. Another instance of the same procedure would automatically recognize
existing results, as it would store its results in the same location. In the
purely object-oriented approach, objects would not know about the exis-
tence of other instances.

3. Since the data source is equipped with I/O methods, all intermediate
results can be stored on disk and reloaded at a later instance; there is no
requirement to equip each computational node with explicit functionality
to store its own data.

4. With additional data added to the source, they are available to be in-
spected with other procedures or visualization modules. This may well
lead to unexpected discovery and insight into the data itself, with no ad-
ditional cost, but in a natural way. Additional data are just available.

Within VISH, the functionality of an Operator Cache is provided to attach any
kind of data to a data source with minimal requirements. If the data source is
a fiber bundle, then a more specific method can be applied.

2.2 Operator Cache

The “Operator Cache” is a C++ template class used to memorize the result
of some computational operation as implemented by a node of a visualization
pipeline (the “Operator”). This generic approach only fulfills the first property
in the aforementioned list. Hereby the data source has to provide the property
to be an “Intercube” object, as described in [Benger et al., 2007]. Basically this
is an runtime-version of multiple inheritance, which allows to attach additional
objects (“interfaces”) to some container (the “intercube” holding many “inter-
faces”), e.g. an object providing data for visualization.

For instance, if we want to memorize a vector of doubles, then we simply
instantiate the OperatorCache template over this data type:

typedef OperatorCache<std::vector<double> > 0C_t;

Now given an InterCube object provided to a computational routine, one may
retrieve an OperatorCache object that may be stored there. If not, we would
need to create one anyway:

void VizNode: :compute(InterCube &MyData)

{
0C_t*0C = 0OC_t::retrieve(MyData, this);
if (!'0C) OC = new 0C_tQ);

Note that the retrieve function basically has two parameters, the data object
“MyData” and the visualization node. Thus, the operator cache can install a
copy of the requested data with each data object and each visualization node. It
is a unique place where the node may store data outside its own local memory,
as illustrated in Figure 4

The Operator Cache is furthermore related to a set of variable values, a
“ValueSet”. Its purpose is to associate the OperatorCache with such a set of
values. If any of these values has changed upon a repeated call of the viz node’s
compute function on the same data-set then the Operator Cache needs to be
equipped with data from a new computation. For instance we might consider an
operator that computes some isosurface. If the isolevel value or some maximum
number of allowed triangles is changed, then the operator would need to execute
the numerical routine again, otherwise it could just return the data stored in the
Operator Cache. An “OperatorCache::unchanged()” member function checks if

Operator

Data

Operator

Data

Data

Figure 4: Data Storage in Intercubes

there are any such differences among the values stored with the OperatorCache
and the current values had occured (it will automatically return “false* if the
OperatorCache was newly created):

ValueSet*Changeables = new ValueSet();
Changeables->addValue (IsoValue) ;
Changeables->addValue (NumberOfAllowedTriangles) ;

if (0C->unchanged(Changeables))

{
// do something with the data existing in OC
return;

}

// compute new data and put them into the 0OC

If there had been changes, then following code is supposed to compute new
data. There may be other parameters that do not require re-computation, such
as another coloring of the resulting isosurface, see Figures 5, 6 and 7. These will
be part of the visualization node, but not be added to the ValueSet that is used
to inspect the Operator Cache. (The actual source code uses a slightly different
syntax as it employs operator overloading to provide a more compact coding.)

2.3 Caching in the Fiber Bundle

When data are available in the fiber bundle, and results are storable in the fiber
bundle, one would not employ the OperatorCache. Rather, any results will be
stored directly in the incoming data structures. To depict how it works, we do
not need to know the entire complexity of the full model. It suffices to know that
there are objects called Bundle and Grid. A Bundle may be accessed with a
floating point value and a string to yield a Grid object. Such a Grid object may
represent a 3D data volume with scalar fields (which is to be identified via some
string), or a triangular surface such as the result of an isosurface computation.
The actual numerical routine “Isosurface” will require a Grid object, a field
name, and a floating point value specifying the isolevel. The schematic code will
look similar to this:

IsoLevel=0.2 Color=Red

Scene Paramters:
i IsoSurface Extractor - IsoLevel=0.2

Rendered Surface

Figure 5: The execution flow: The first time, the complete cascade has to be
executed. The operators read the data-set from disk, compute the isosurface,
render the surface and composite it to the final image. The separation into
operators is hidden and is not all seen by the user.

Grid VizNode: :compute(Bundle&B, double time,
string Gridname, string Fieldname,
double Isolevel)

// Construct a unique name for the computational result
string IsosurfaceName = Gridname + Fieldname + Isolevel;
// Check whether result already exists for the given time
Grid IsoSurface = B[time][IsosurfaceName];
if (!IsoSurface)
{
// No, thus need to retrieve the data volume
Grid DataVolume = B[time][Gridname];
// and perform the actual computation
IsoSurface = Compute(DataVolume, Fieldname, Isolevel);
// finally store the resulting data in the bundle object
B[time][IsosurfaceName] = IsoSurface;
}

return IsoSurface;

Note that in case an IsoSurface Grid already exists, there is no need to
request a DataVolume object. The operation of requesting such might be effort-
some, including slow disk access (on-demand loading), numerical computation
of the source field, network access, etc. Never are any data actually stored in
the VizNode object itself. In this version, a new geometry is stored for each
time step and each isolevel value. Since these are floating point values, this may
well need to an immense number of surfaces that are stored when exploring
the parameter space of time and isolevel. Therefore, some appropriate memory

IsoSurface Extractor]
IsoLevel=0.4
Uniform Scalarfield LS
Color=Red
Scene Compositing
Rendered Surface

Figure 6: The execution flow: Resulting data flow when changing the isosurface
level parameter. The data-set need not be read from disk again.

IsoSurface Extractorg
IsoLevel=0.2

Surface Renderer
Color=Green

Figure 7: The execution flow: Resulting data flow when changing the color of
the iso surface. The isosurface need not be recomputed again.

management that discards old objects that have not been accessed for a long
time will be mandatory.

2.4 OpenGL Caching

The final stage of producing pixels using modern graphics hardware is loading
data onto the memory of the graphics card (GPU). Once all data that are
required for rendering are transferred to the GPU, pixel generation will be as
fast as possible. Via means of OpenGL, large data at the GPU are modeled as
Display Lists, Textures and VertexBuffer Objects. Framebuffer objects might fall
into this category as well, but we did not consider them yet. While the graphics
memory is limited, it may still provide enough space to also store objects that
are not visible in the currently viewed frame but a previous one. Re-utilizing

10

Fiber Data
Bundle

D 4
;

R H
8 '
.
Operator g !
Pt .
a—-- J
acan /
/
/
/
-
1

Figure 8: Data Storage in the Fiber Bundle

objects already stored in GPU memory is much faster than re-loading objects
from RAM. We may expect so even in case the graphics driver is placing some
object into RAM itself.

GPU
I 4 §
Qq __________

Figure 9: Caching on the GPU

Mmojjelreq

In contrast to caching RAM data like those on the fiber bundle, GPU data
is only available through some handle within an OpenGL context. It cannot
be stored with the data source. We thus utilize a management system for
the OpenGL handle identifiers that is associated with a viewer, called the
“GLCache”. The GLCache is a mapping from certain keys to an OpenGL iden-
tifier object (internally just an integer). This mapping is three-dimensional and
of the structure:

GLuint DisplayList = GLCache[Intercube] [typeid] [ValueSet];

Hereby, a given GLCache object, a DisplayList identifier can be retrieved by
specifying

1. an arbitrary Intercube object
2. an intrinsic C++ type ID

3. a set of values

11

The functionality is similar to the OperatorCache, where an InterCube and a
visualization node is utilized to specify a location of the OperatorCache, plus
a set of values used to determine whether re-creation of the data is required.
Here, the storage location of the cached objects is provided by the GLCache,
a parameter that is provided to a visualization object’s render routine. The
InterCube object (which, for instance, is available with each Grid or Field object
within a fiber bundle data-set) is used to find a unique storage location within
the GLCache. The typeid will be the type of the rendering object, such that
multiple instances of the same rendering functionality will automatically be able
to share their OpenGL objects. The set of values will contain all those rendering
parameters which require re-creation of the OpenGL object. A typical rendering
code will (schematically) look like this:

void VizNode: :render (GLCache Context, Grid G)
{
ValueSet VS;
// assign cacheable variables into the value set
InterCube&C = G;
GLuint DisplayList = GLCache[Intercube] [typeid(this)] [VS];
if (!DisplayList)

{

DisplayList = glGenLists(1);

glNewList(DisplayList, COMPILE_AND_EXEC) ;

// do actual rendering of grid data G

glEndList () ;

GLCache[Intercube] [typeid(this)] [VS] = Displaylist;
}
else

glCalllist(DisplayList);
}

A similar synopsis will be applied for OpenGL object types others than dis-
play lists. Some automatic discarding mechanism to ditch unused objects will
be required here as well. Note that in case an OpenGL object already exists for
a given input data-set (here a “Grid” object), then there is no need to actu-
ally request the internal data of such an object and to traverse the associated
visualization pipeline up to its source, such as shown in Figure 10.

3 Conclusion

An universal caching mechanism has been presented. It can be used to extend
the visualization pipeline model (as defined by [Haber & McNabb, 1990]) to
maximize the reuse of computed data and thereby minimizing the response
time of an interactive visualization to parameter changes. The mechanism can
relate computed data for all parameters of the visualization, which make fast
and easy navigation in the whole parameter space possible. Special emphasis

12

Time -

mojjereq T

Figure 10: A GPU cached visualization cascade provides the animation without
expensive data flow.

is given to the time parameter and time depended data. The implementation
demonstration utilizes the Vish framework and also the fiber-bundle model. By
incorporating the described GPU caching mechanism full interactivity when
browsing an astrophysical data set of 17GB - containing 1.6 million points in
200 time steps - has been achieved. This visualization was run on a Linux 64 bit
workstation equipped with a eight 1.6GHz cores (only one of which was used
by Vish), 8 GB of RAM and a Geforce Quattro FX5600 graphics card with
1.5GB of GPU memory. The caching mechanism accelerated the visualization
to a achieve interactive rates of 30 frames per second when traversing in time
in addition to arbitrary spatial camera movement. The first access of the data
including reading from disk and processing data in contrast required a couple
of seconds for each newly accessed time step. It was also possible to maintain
the interactive frame rate while changing parameters such as color-maps and
density shape-functions used for volume rendering.

4 Acknowledgements

This cooperation research work was supported by the DFG (SCHO 1346/1-1).
This research employed resources of the Center for Computation & Technology
at Louisiana State University, which is supported by funding from the Louisiana
legislature’s Information Technology Initiative. Portions of this work were sup-
ported by NSF/EPSCoR Award No. EPS-0701491 (CyberTools).

13

References

[A.A. Ahmed, 2007] A.A. Ahmed, e. a. (2007). Automatic visualization pipeline
formation for medical datasets on grid computing environment.

[Benger, 2004] Benger, W. (2004). Visualization of General Relativistic Tensor
Fields via a Fiber Bundle Data Model. PhD thesis, FU Berlin.

[Benger, 2008] Benger, W. (2008). Colliding galaxies, rotating neutron stars
and merging black holes - visualising high dimensional data sets on arbi-
trary meshes. New Journal of Physics, 10. URL: http://stacks.iop.org/
1367-2630/10/125004.

[Benger et al., 2007] Benger, W., Ritter, G., & Heinzl, R. (2007). The concepts
of vish. In 4" High-End Visualization Workshop, Obergurgl, Tyrol, Austria,
June 18-21, 2007 (pp. 26-39).: Berlin, Lehmanns Media-LOB.de.

[Benger et al., 2006] Benger, W., Venkataraman, S., Long, A., Allen, G., Beck,
S. D., Brodowicz, M., MacLaren, J., & Seidel, E. (2006). Visualizing katrina
- merging computer simulations with observations. In Workshop on state-of-
the-art in scientific and parallel computing, Umea, Sweden, June 18-21, 2006
(pp- 340-350).: Lecture Notes in Computer Science (LNCS), Springer Verlag.

[Bischof et al., 2006] Bischof, H.-P., Dale, E., & Peterson, T. (2006). Spiegel
- a visualization framework for large and small scale systems. In MSV (pp.
199-205).

[Black et al., 2002] Black, A. P., Huang, J., Koster, R., Walpole, J., & Pu, C.
(2002). Infopipes: an abstraction for multimedia streaming. Multimedia Syst.,
8(5), 406-419.

[Card et al., 1999] Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999).
Using vision to think. (pp. 579-581).

[Foulser, 1995] Foulser, D. (1995). Iris explorer: a framework for investigation.
SIGGRAPH Comput. Graph., 29(2), 13-16.

[Haber & McNabb, 1990] Haber, R. & McNabb, D. A. (1990). Visualization id-
ioms: A conceptual model for scientific visualization systems. In Visualization
in Scientific Computing.

[Haeberli, 1988] Haeberli, P. E. (1988). Conman: a visual programming lan-
guage for interactive graphics. SIGGRAPH Comput. Graph., 22(4), 103—-111.

[Hibbard, 1999] Hibbard, B. (1999). Top ten visualization problems. SIG-
GRAPH Comput. Graph., 33(2), 21-22.

[Johnson & Jennings, 2001] Johnson, G. W. & Jennings, R. (2001). LabVIEW
Graphical Programming. McGraw-Hill Professional.

14

[Schroeder et al., 1997] Schroeder, W., Martin, K., & Lorensen, B. (1997). The
Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice
Hall.

[Shen, 2006] Shen, H. (2006). Visualization of large scale time-varying scientific
data. J. of Physics: Conf. Series, 46, 535-544.

[Treinish, 1997] Treinish, L. A. (1997). Data explorer data model. http://www.
research.ibm.com/people/1/1loydt/dm/dx/dx_dm.htm.

[Upson et al., 1989] Upson, C., Thomas Faulhaber, J., Kamins, D., Laidlaw, D.,
Schlegel, D., Vroom, J., Gurwitz, R., & van Dam, A. (1989). The application
visualization system: A computational environment for scientific visualiza-
tion. IEEE Computer Graphics and Applications, 9(4), 30-42.

15

