
Remote Rendering Strategies for Large Biological

Datasets

Wolfram Schoor1,3 and Marc Hofmann1 and Simon Adler1,3 and
Werner Benger2 and Bernhard Preim3 and Rüdiger Mecke1

1Fraunhofer Institute for Factory Operation and Automation, Germany

wolfram.schoor,marc.hofmann,simon.adler,ruediger.mecke

@iff.fraunhofer.de
2Center for Computation and Technology, Louisiana State University, USA

werner@cct.lsu.edu
3Otto von Guericke University Magdeburg, Germany

preim@isg.cs.uni-magdeburg.de

Abstract

This paper presents remote rendering technologies to support the analysis
and exploration of large biological datasets evaluated for a medium sized
biology research institute. Reconstructed three-dimensional models and
other data domains stored in a database are the foundation for the visu-
alization. Remote Rendering via a web-based client enables a widespread
access to the data with interactive frame rates and high-quality render-
ing results without the demand of new client hardware. Moreover, the
rendering server has the capability to manage multiple independent or
collaborative sessions and creates only a very small network traffic over
time. Two worst case scenarios were tested i) a network connection with
very small bandwidth, and ii) a thin graphical server solution for render-
ing.

1 Introduction

Remote Rendering commonly means interactive visualization of three-
dimensional datasets via a client/server architecture over a network. Visualiza-
tion of complex 3D models is still a task hard to accomplish without specialized
hardware. Furthermore, ad-hoc visualizations over distance are playing a key
role in future visualization trends. One problem of visualization is that huge
amounts of data must be handled, which requires not only a fast CPU and
high memory capacities (RAM), but also a high degree of graphics output
manageable by modern graphics cards.
These resources cannot be covered and the data amount is increasing faster
than processors [Moore, 1998]. Another aspect is that the data must be



stored somewhere, and a heterogeneous data storage on different clients is not
acceptable.
These drawbacks can be overcome by the concept of remote rendering, also
called remote visualization. The datasets are computed on a rendering machine
with high graphics capabilities - the so-called server, and only rendered images
are sent to the working station - called clients. For remote visualization
purposes the following key issues denote indicators of quality:

• Network latency • Graphics performance (fps)
• Network throughput • Scalability (user number)
• Error recovery • Network robustness
• Security issues • Balance (local/remote resources)
• Hardware/software incompatibility

The work presented here is motivated by a given shortcoming regarding bio-
logical model visualization, namely limited bandwidth, slow clients with poor
graphics capabilities, large biological 3D models and the demand to real-time
interaction. The latter cannot be covered by existing conventional remote ren-
dering techniques. Therefore, a remote rendering architecture with reduced net-
work traffic generating correct high-quality renderings for low level end user
PCs with interactive frame rates is given in this paper.

2 Related Work

This section briefly shows the stages of remote rendering techniques from the
past to today, presents a possible classification of remote rendering applica-
tions dealing with polygonal models, and introduces established applications.
The treatment of other model representation forms will not be part of this pa-
per. Nevertheless, the principle way of converting these representations into a
polygonal representation as pre-step can be performed.

2.1 Historical Outline

The idea of remote rendering/visualization is not new. Various remote rendering
applications have been developed in the past.
One of the most popular remote rendering applications for 2D systems was the
X Window protocol [Scheifler & Gettys, 1986] for X systems. The extension to
transfer 3D primitives is the OpenGL Stream Codec (GLS) [Dunwoody, 1996]
introduced by SGI.
A standard technique for remote display of 3D applications is GLX
[Womack & Leech, 1998], the “OpenGL Extension to the X Window System”1.
Using GLX for remote rendering, GL commands are encoded by the client side’s
API and sent to the X server within GLX packages. These commands are de-
coded by the X server and submitted to the OpenGL driver for rendering on
graphics hardware at the server.

1The pendant for Windows operating systems is WGL and CGL for Mac OS X respectively.



2.2 Classification

Adapted from [Schmalstieg & Gervautz, 1996], remote rendering techniques of
3D geometry models can be classified as follows:

Data VisualizationVisualization RenderingRendering Display

Data VisualizationVisualization RenderingRendering

Data VisualizationVisualization RenderingRendering

Data VisualizationVisualization RenderingRendering Display

Display

Display

a)

b)

c)

d)

Figure 1: Remote rendering types a) image-based, b) geometry replication, c)
immediate-mode, and d) hybrid rendering

1. Image-based:
Rendering is performed by the sender, and the resulting stream of pix-
els is sent over the network as provided in [Scheifler & Gettys, 1986] (see
Figure 1 (a)).

2. Geometry-based:
A copy of the geometric database is stored locally to be accessed by
the rendering process. The database can either be available before
application start (kept on local hard disk), or downloaded just before
usage, such as VRML / X3D browsers can do [Gueziec et al., 1999],
[Web3D Consortium, Inc., 1998] and [Web3D Consortium, Inc., 2004]
(see Figure 1 (b)).

3. Immediate-mode drawing:
The low-level drawing commands used by drawing APIs are issued by the
application performing the rendering. They are not immediately executed,
but sent over the network as a kind of remote procedure call. The actual
rendering is then performed by the remote machine (e.g. distributed GL
[Shreiner et al., 2005]), see Figure 1 (c).

4. Hybrid rendering:
In this approach a 3D geometry as low resolution representation is ren-
dered on the client’s side and the server transmits images to the client



as well. The used mode depends on the performed user action (computa-
tional vs. network load) [Koller et al., 2004] or is dynamically adapted to
the available network capacities (see Figure 1 (d)).
Another quite different hybrid rendering approach is presented in
[Lin et al., 2007]. JPEG images are used to stream embedded 3D model
information decoded as RGB information.

2.3 Existing Remote Visualization Tools

A variety of remote visualization applications exists in the IT universe. Many
of them are well established and cover a wide range of different visualization
capabilities or even have their focus on cluster applications.
In the following, a brief overview of existing remote visualization tools will be
given. This list is not intended to be exhaustive.

Application Image- Geometry- Hybrid Colla-

based based boration

HP Remote Rendering Service + - - +
[Hewlett-Packard, 2007]
SGI VizServer [SGI Inc., 1999] + - - +
Sun Shared Visualization + - - +
[Sun Microsystems, Inc., 2008]
Chromium [Humphreys et al., 2002] + + o o
VR-Juggler [Bierbaum et al., 2001] o + - +
Scan View [Koller et al., 2004] + + + -

Table 1: Comparison of remote rendering tools,
(+) available, (-) not available, (o) unknown

2.4 Findings

Summarized, existing remote rendering techniques cover a wide range of problem
statements including image-based remote renderings (suitable for fast network
connections) or geometry-based remote renderings (e.g. cluster rendering with
sufficient client’s graphics hardware). Some of these approaches support collab-
orative remote rendering as well.
Hybrid rendering methods for their capabilities could be identified as adequate
rendering method for low and medium level clients using networks with medium
network speed.



3 System Demands

In this section the requirements of the involved underlying system architecture
and its components as well as special user interests are discussed with respect
to the chosen use case; a medium sized biology research institute.
Main issues are the individual clients’ hardware configurations in the network,
the data transfer capabilities and the state of scientific data in the investigated
institution.

3.1 Clients Configuration

A medium-sized scientific biology research institute with approximately 300 po-
tential clients was evaluated. These clients are completely heterogeneous, they
cover a big inventory of out-of-date machines2 as well as a few state-of-the-art
hardware machines. The utilized systems are as diverse as the clients’ hard-
ware configurations. Whereas the processor speed is widely feasible, the graphics
hardware is not. An nVidia GeForce2 MX is for example capable of rendering
20 million triangles per second (see www.nvidia.com). This means that at most
800, 000 triangles can be rendered per frame in real-time during interaction. One
biological dataset consists of more than 80% more triangles than this hardware
can manage. These preconditions have to be taken into account in the design of
a remote visualization application for large biological models.

3.2 Server Configuration

Two different server machines could be used for testing the remote visualization
performance.
The first one is a high performance computer with two Quad-Core Opteron
2.6 GHz, 16 GB RAM, a Quadro FX 5600 graphics card and furthermore a
Tesla S870 processor with 500 GFlop and a shared 1 GBit connection (bottle-
neck) to the “Deutsches Forschungsnetz” (DFN) and to the biology research
institute. An average server upload Bup of 2 MBit with average ping rates tavg

lesser than 23 ms could be identified (σBup
≈ 0.2 MBit, σtavg

3 ms ).
The second server is a minimal graphics server configuration with a 2.8 GHz
Pentium IV with 4 GB RAM and WindowsXP as operating system. The render-
ing job is done by one Nvidia 7800 GTX graphics card. This server is directly
located at the biology research institute. The minimum network connection for
this setup is bound to the local switches and achieves 100 MBit.

3.3 Data Transfer

The data transfer capabilities are one major aspect in the remote data visual-
ization and can be formulated regarding to Equation 1.

B ≥ (Rw Rh) Cdepth f n

cfactor
(1)

2e.g. Win98 Pentium III’s with less or equal 500 MB RAM

www.nvidia.com


Without any compression cfactor and for a screen resolution RwxRh (XGA), a
color depth Cdepth of 3 Bytes/pixel and a frame rate f of 26 frames/sec for only
one client n, this would require at least a bandwidth B of:

B ≥ (1024 ∗ 768) pixel ∗ 3 Bytes/pixel ∗ 26 sec−1 ∗ 1
1

B ≥ 60 MByte/s (2)

which is still high and only possible with at least 1 GBit/s ethernet3 (see exam-
ple calculation in Equation 2).
Using JPEG compression this can be reduced by a factor cfactor of 10 − 300
(depending on the resulting image quality) and will also work with slower con-
nections. A compression factor of 50 will result in a data transfer rate of approx-
imately 1200 kByte/s which might fit in a 10 MBit data connection, if the other
users produce only very low amounts of traffic. This means a permanent data
stream would load the network traffic and also prevent highly detailed images
on the clients’ side.
The local network speed at the biology research institute depends on the used
switches and includes 100 MBit as well as 1 GBit connections. This fact pre-
vents a standard remote rendering strategy due to the reason that high-quality
renderings would not fit into a 100 MBit connection if a couple of other users
share the same server connection (big n).

3.4 Data Resources

The biological data pool consists of different data domains from biological ma-
terial. The internal knowledge of the data’s specific characteristics can be ad-
vantageous to find solutions for a well suited remote visualization approach.
For the visual analysis, specifically microtome serial section data of different
stages of barley seed development (days after flowering or DAF) are used, sim-
ilar to the method described in [Gubatz et al., 2007].
Each dataset consists of approximately 2, 000 slice images of barley caryopsis,
which were obtained from a microtome at 3 µm slice thickness. Digitized with
a color CCD camera, images originally measured 1600× 1200 pixels at a spatial
resolution of 1.83× 1.83 µm per pixel. Since color-space analysis revealed an al-
most linear correlation and a limited range, it was possible to reduce the optical
resolution of 12 bits for each RGB channel to 8 bit grayscale images without
significant losses [Schoor et al., 2008a], thus reducing the data volume for each
dataset to approximately 5 GB. Depending on the developmental stage of the
specimen, sections can be too large to be captured in a single frame at the given
spatial resolution.
Available data include gene expression assays utilizing mRNA in-situ hybridiza-
tion (ISH) probing of histological cross-sections. Whereas in-situ data allows

3An SXGA screen resolution requires respectively around 100 MByte/s.



visualization of spatial gene expression patterns, staining with gene-specific sam-
ples requires complex chemical protocols, for that ISH image data origins from
different individual caryopsis.
Magnetic resonance spectroscopy measurements (1H-NMR) of caryopses at dif-
ferent points in time were sampled in a specific device. While being nondestruc-
tive, the detected proton distribution has a lower spatial resolution of approxi-
mately 10µm (isotropic) per voxel, and does not resolve histology or structural
features.
Other potential datasets, such as macroarray gene expression data or
metabolomic assays by laser microdissection (LMD), could be integrated into
the database to enhance synergy and facilitate the inference of analysis results.
Figure 2 presents the database with different data domains and an example
image, and Figure 3 a pie chart breaking down data distribution per model.
The organization is derived from the entity-attribute-value (EAV) design as in
[Anhøj, 2003]. This approach has the advantage of high flexibility when extend-
ing the database with other data domains.

db

Histological data

3-D surface

data

In-situ

hybridization

H-NMR data

…

Figure 2: Schematic view: Integration of different data domains by using an
EAV model for the visualization database.

3.5 Visualization Aspects

Another very important precondition is the range of functions of the remote
rendering application to develop. At the moment the bio researchers test a
software application which is especially tailored to them, namely the BioVizIt
application. This software is initially a single-user stand alone application, which
is not network compatible.
Among others, the scope of this solution covers the following features and
actions:

• scene graph,

• transparency and color settings to objects,



Resources of data domains 

24%

12%

60%

2%
1%

1%

Histological data

3-D surface data

In-situ
hybridization (ISH)

H-NMR

Macroarray gene
expression

Metabolic assays

Figure 3: Data distribution for one model, the absolute data totaling around
9 GB

• hide, copy, delete, create, rename, group and ungroup objects,

• affine transformations, model deformations and model measurements,

• variable and textured clipping planes per object,

• image segmentation techniques,

• annotations

Another point the application must meet is the production of high-quality ren-
derings on demand. All these features and actions have to be considered as
part of the resulting remote rendering application to best possibly support the
biologist’s work.

3.6 Findings

As conclusion, there are different possibilities to perform remote visualization
tasks as proposed in Section 2. As possible candidates only those solutions are
appropriate which meet the requirements of the Section 3.1-Section 3.5 .
The clients’ hardware denotes that the datasets to be worked with are too large
and too complex to be viewed with local resources. The standard approach for
remote visualization (pure image transfer)is not sufficient for this application
due to the fact that rendered images with complex color patterns and differing
inter-frame correlations typically lack in being processed and transmitted with
interactive frame rates.
As solely remote rendering approach which fits the system requirements a
hybrid rendering approach is applicable. Due to the specific visualization
requirements depicted in this section a conception with an explicit control
to data exchange mechanisms and adaption possibilities of the visualization
is necessary. A solution to achieve this is to extend the existing BioVizIt
application with specific hybrid remote rendering capabilities.



4 The Concept of a Hybrid Remote Rendering
Approach

In the following, the remote visualization concept is described, where a hybrid
rendering approach is the basis. Furthermore, the architecture’s adaptions of the
BioVizIt platform, referring to network compatibility and approaches addressing
limited bandwidth, are described.

4.1 Hybrid Rendering

Figure 4 illustrates the idea of the hybrid approach. In the beginning of the

Rendered image

Client Server

Datasets' names

(Scene graph changes)

Camera position and orientation
Rendering scene

Loading data sets

Creating session

Restoring session

Rendered image

(Scene graph changes)

Camera position and orientation

Resizing image

Compressing image

Rendering scene

Resizing image

Compressing image

Displaying image

Navigation

Modifying scene graph

Displaying image

Navigation

Modifying scene graph

Initial rendering request

Consecutive image requests

Image related Scene graph related Viewpoint related
Session related3D related

Reduced 3D dataset

Loading LOD model

Figure 4: Sequential diagram of the proposed hybrid rendering approach

rendering process (initial rendering request) a request with datasets’ names
and initial settings is sent to the server. As a result, the server application is
loading the requested file from the database, and in addition a low resolution
3D geometry model (level of detail also LOD) is transferred to the client.
Moreover, the graphics server submits the first remote-rendered image to the
client.
If in the following, user navigation is performed (consecutive rendering re-
quests), the local 3D model is rendered by the client itself. Fast movements
can be achieved without having performance problems due to network limi-
tations. The local 3D model can be reduced (detail loss) up to one per mill
(approximately 4-5 MB) of the original data amount of the 3D model. This
is equivalent to the data amount necessary performing real-time server-sided



image rendering in XGA mode for two frames. Even if the bandwidth is less
than 10 MBit an initial loading delay for an unoptimized data transfer of
4 seconds for the complete low resolution model would be acceptable to the
user, if afterwards a stable real-time interaction can be performed.
In case of stopping the navigation or changing the scene graph for example, a
command is immediately sent to the server (containing at least the new camera
position and orientation) to request a new rendered image. This approach
ensures real-time model interactions with a high-quality rendering result during
the model exploration.
A comparable approach is used by a variety of programs which display only a
subset of the whole dataset or even a faster rendering mode (point rendering)
to ensure real-time model interaction, for example Polyworks4.
Geometry Submission
The server stores the information of the original 3D models and also in coarser
resolutions (LOD). This storage overhead is uncritical because data storage
is not the limiting size for this application. Datasets are generated according
to the proposed technique in [Schoor et al., 2008b] (see Figure 5). If a dataset

a) b)

Figure 5: Surface models of different grains’ outer hull at different resolutions
a) grain with a mesh size of 560,000 triangles and detail with highlighted faces
b) reduced mesh with approximately 10,000 highlighted faces and detail with
highlighted faces

is requested, the original dataset is loaded into the server application. At the
same time a low resolution model is transferred from the database to the client.
Image Submission
The image submission by demand is a concept to overcome the server network
load. Additionally, image compression algorithms [Taubman & Marcellin, 2001]
and residual images (see [Yoon & Neumann, 2000]) are used to reduce the
network traffic.

4 http://www.innovmetric.com

http://www.innovmetric.com


4.2 Network Interconnect

Another important aspect besides the underlying data transfer per se is how
the data will be transported. To achieve high resolution rendering results on
the client, only a reliable data transfer method is an option. This excludes for
example UDP or UTP [Thibault et al., 2002] data transfer, because in such data
transfer mode the correct rendering result is not warranted due to unordered
or lost packages. The network protocol layer TCP is sufficient for the required
purposes, albeit UDP is faster, for example.
By contrast the TCP connection ensures the correct receiving of either geometry
models or rendered images.

4.3 Architecture Adaption of the
BioVizIt Platform

For an extension of the existing solution as server variant the range of functions
must be appended to network and session routines. Multiple network connec-
tions through clients must be promptly accepted and processed, using multi-
threading techniques. User events are registered in a message queue. This queue
is held in the operating system and members of the queue are passed to the
application (for example panning the window). Received messages by the appli-
cation are then handled in a procedure of the primary thread.
To avoid blockages in the processing of this thread, a new thread – the “server
thread” – is generated during the program start to wait for new client requests
via Transmission Control Protocol (TCP).
If a client connects to the server over a predefined port, a new “client thread”
is generated immediately for this client. This thread is responsible for further
communication with the client.
The client thread reads the request from the server’s socket thread and in-
terprets it through the HyperText Transfer Protocol (HTTP). By accessing a
virtual document, additionally the document area of the HTTP request is used,
which includes the remote rendering control commands of the client for the
server. These commands are processed sequentially.
At the end of this processing the client is enqueued to a list, which contains
clients awaiting an image synthesis step.

5 Implementation and Results

In this section, the essential aspects of the implementation are presented. The
identified key issues for remote visualization are examined regarding the pre-
sented approach.
Network latency The latency at the beginning of a session depends on how the
geometry transmission is handled. The coarse 3D model can first be accessed
after full model upload. This can take a few seconds for the geometry transmis-
sion (3 − 4 s for server case 2). This is an initial step which is only performed



once a model is loaded. After that, the interaction is performed with latencies
< 30 ms due to local rendering.
The rendering result in high resolution takes less than 1 second after the mouse
button is released (indicating the end of user navigation). The time needed to
display the result on the client is the sum of the steps which are shown in
Figure 6.

Figure 6: Sequential diagram of server and client transmissions with approximate
time spans for one remote rendering step for server case 2

The sequences in Figure 6 are:

1. the control signal from interaction device (mouse) to the client

2. establishing TCP connection (3-way handshake)

3. sending the rendering information via html request (position, orientation, fov,
etc.)

4. doing the rendering job on the server

5. establishing TCP connection again

6. sending an image request to the server and getting the respective data

7. using these data to display the scene in high resolution



Graphics performance The graphics performance of the client rendering stage
depends on the clients hardware and on the level of detail in which the 3D model
was submitted. For the tested application even on a Pentium III client a coarse
3D model with 20, 000 points could be interactively visualized.
During the observation of the model (no model interaction) no rendering step
is required. That means that a real-time application can be guaranteed for the
model interaction.
Network throughput The network throughput per high resolution image request
is equivalent to the physical size of this image and corresponds to approximately
300 kB. With an initial geometry transfer of 4-5 MB for the low resolution 3D
model and an average image request of 3-5 s, a data volume per client of 10 MB
is transmitted within the first minute.
Scalability The approach provided here has a good scalability. The rendering
of scenarios, such as described in Section 3, can be accomplished on graphics
servers without problems with interactive frame rates (Case 2: minimum graph-
ics server solution). That means, in the worst case5 the remote rendering image
of the last handled client will be displayed with an additional delay of approx-
imately 1 s if the data transfer is ignored. This is the theoretical maximum
number of users which can be handled by the server under the assumption that
a delay of more than 2 seconds is not acceptable to users.
Taking the 100 MBit connection as lower bound for the data channel (see Sec-
tion 3), more than 40 clients can request a full resolution image at the same
time without causing additional delay at a client station due to the data trans-
fer. Assumed that a 2 MBit connection is the average connection configuration
for the server case 1, and a full image resolution is requested, only one client
request per second is possible without causing an additional delay on the client.
Error recovery The error recovery is automatically performed by the network
protocol layer (TCP) which provides explicit error corrections. Furthermore, a
transmission control and data ordering is also part of this protocol. This is paid
with a higher latency of the remote rendering.
Network robustness In general, the failure of a network connection in the begin-
ning of a work session leads to an insufficient remote visualization. During the
session a temporary failure of the network connection in the time scale of sec-
onds can be bridged without problems due to the local downsampled version of
the 3D model. A loss of connectivity within a larger time range disallows a prac-
tical use of the here provided technique due to the missing detail information
the remote-rendered image provides.
Security issues The data pool of plant biological data consists of confidential
information. Even an internal use must contain at least a simple protection
mechanism due to project internal information. Therefore, a simple login query
was integrated to authenticate the users with respective project rights. Further-
more, each session on the remote visualization server is initially hidden to other
users.
This approach does not cover any wiretap operation or similar attacks via net-

5e.g. if the server gets a synchronous request of 25 clients



work. The image data as well as the 3D low resolution models are submitted
plain without protection mechanism up to now. Possible are techniques like in
[Koller et al., 2004] which provides small shifts in the submitted image data
(jitter) to prevent a reconstruction of the high resolution 3D model data or use
additionally a secure transfer protocol (e.g. HTTPS).
Balance between local/remote resources The architecture of the hardware at the
scientific institution is naturally very heterogeneous. A uniform strategy to ex-
tensively use clients’ hardware is therefore not applicable. As the least common
denominator, a low resolution 3D model, which is tailored to the actual hard-
ware configuration, is used at the clients’ side to achieve real-time interaction.
Hardware/software incompatibility The visualization software is written in
C++, uses only libraries like wxWidgets and OpenGL, and is therefore
platform-independent for supported systems. The visualization service tests for
hardware premises, if specific features are not supported by actual server hard-
ware, alternatively slower CPU-based implementations exist (e.g. deformation
model).
The client’s visualization front-end uses a platform-independent web interface,
based on Java R© V ersion 1.5, Java 3D

TM
. This front-end was tested with

Firefox 3.0, Internet Explorer 6.0 / 7.0, Opera, and Chrome Beta. The
application even runs on a mobile device with Windows CE. Incompatibilities
are not known so far. The tests covered only the general operating.

Figure 7 shows a screenshot of the provided web interface and the visualization
options.

6 Conclusion

In this paper a remote rendering approach was presented, which is applicable
to medium-sized enterprises who have to deal with a large amount of scientific
data. With a minimum of effort and the use of existing hardware this approach
allows to visualize, explore and modify data. It could be shown that a simulta-
neous use of 5 high-level sessions could be managed with no recognizable loss of
performance even with the server case 1.
The clients hardware constitution must not be state-of-the-art which makes this
approach of visualization furthermore attractive in a financial manner. Instead
of the high end graphics server (case 1), the local visualization server with the
minimal graphics configuration (case 2) is to prefer. The network bandwidth
could be identified as limiting constraint respective to the number of clients
contemporaneously used.

7 Future Work

If the remote rendering application will be used with many users, the aid of more
than one rendering machine can be usefull. In the next term a larger focus will



Figure 7: Screenshot of the clients web interface showing a reconstructed model
of a caryopsis with clipping plane

be placed on data modification possibilities and supporting full functionality to
biologists in comparison to the stand-alone BioVizIt application.
A linking of the VISH platform [Benger et al., 2007] with the provided Java
web-interface is planned.
Applying non photorealistic rendering (NPR) aspects like the line drawings
based on multi-resolution meshes [Ni et al., 2006] or feature-line-based city vi-
sualizations [Quillet et al., 2006] to remote rendering applications, this can im-
prove the performance if using a purely image-based remote rendering approach.
It is planned to expand the intranet-based solution to the internet for selected
public datasets so that interested users can interactively explore information
within the provided 3D models from the institutes website.

8 Acknowledgments

This research work is being supported by the BMBF grants 0313821B and
0313821A. The authors would also thank the DFG for supporting the coop-
eration preparative between the Fraunhofer Institute and the Louisiana State
University by the grant SCHO 1346/1-1.



References

[Anhøj, 2003] Anhøj, J. (2003). Generic design of web-based clinical databases.
Journal of Medical Internet Research, 5(4), e27. URL: http://www.jmir.
org/2003/4/e27/.

[Benger et al., 2007] Benger, W., Ritter, G., & Heinzl, R. (2007). The Con-
cepts of VISH. In Proceedings of the 4th High-End Visualization Work-
shop: Open issues in visualization with special concentration on applications
in astrophysics, numerical relativity, computational fluid dynamics and high-
performance computing.

[Bierbaum et al., 2001] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker,
A., & Cruz-Neira, C. (2001). VR Juggler: A Virtual Platform for Virtual Re-
ality Application Development. In VR ’01: Proceedings of the Virtual Reality
2001 Conference (VR’01) (pp. 89–96). Washington, DC, USA: IEEE Com-
puter Society.

[Dunwoody, 1996] Dunwoody, C. (1996). The OpenGL stream codec : A speci-
fication. Technical report, Silicon Graphics, Inc.

[Gubatz et al., 2007] Gubatz, S., Dercksen, V. J., Brüß, C., Weschke, W., &
Wobus, U. (2007). Analysis of barley (Hordeum vulgare) grain development
using three-dimensional digital models. The Plant Journal, 52(4), 779–790.

[Gueziec et al., 1999] Gueziec, A., Taubin, G., Horn, B., & Lazarus, F. (1999).
A Framework for Streaming Geometry in VRML. IEEE Computer Graphics
and Applications, 19(2), 68–78.

[Hewlett-Packard, 2007] Hewlett-Packard (2007). Advantages and Implementa-
tion of HP Remote Graphics Software HP Remote Graphics Software enables
2D and 3D real-time interactive graphics and collaboration from a distance.
White Paper.

[Humphreys et al., 2002] Humphreys, G., Houston, M., Ng, R., Frank, R., Ah-
ern, S., Kirchner, P. D., & Klosowski, J. T. (2002). Chromium: a stream-
processing framework for interactive rendering on clusters. ACM Trans.
Graph., 21(3), 693–702.

[Koller et al., 2004] Koller, D., Turitzin, M., Levoy, M., Tarini, M., Croccia, G.,
Cignoni, P., & Scopigno, R. (2004). Protected interactive 3d graphics via
remote rendering. ACM Trans. Graph., 23(3), 695–703.

[Lin et al., 2007] Lin, N.-S., Huang, T.-H., & Chen, B.-Y. (2007). 3D Model
Streaming based on JPEG 2000. IEEE Transactions on Consumer Electron-
ics, 53(1), 182–190.

[Moore, 1998] Moore, G. E. (1998). Cramming more components onto inte-
grated circuits. Proceedings of the IEEE, 86(1), 82–85.

http://www.jmir.org/2003/4/e27/
http://www.jmir.org/2003/4/e27/


[Ni et al., 2006] Ni, A., Jeong, K., Lee, S., & Markosian, L. (2006). Multi-scale
line drawings from 3d meshes. In I3D ’06: Proceedings of the 2006 symposium
on Interactive 3D graphics and games (pp. 133–137). New York, NY, USA:
ACM.

[Quillet et al., 2006] Quillet, J. C., Thomas, G., Granier, X., Guitton, P., &
Marvie, J. E. (2006). Using expressive rendering for remote visualization of
large city models. In Web3D ’06: Proceedings of the eleventh international
conference on 3D web technology (pp. 27–35). New York, NY, USA: ACM.

[Scheifler & Gettys, 1986] Scheifler, R. W. & Gettys, J. (1986). The X window
system. ACM Trans. Graph., 5(2), 79–109.

[Schmalstieg & Gervautz, 1996] Schmalstieg, D. & Gervautz, M. (1996).
Demand-driven geometry transmission for distributed virtual environments.
Computer Graphics Forum, 15(3), 421–431.

[Schoor et al., 2008a] Schoor, W., Bollenbeck, F., Hofmann, M., Mecke, R., Seif-
fert, U., & Preim, B. (2008a). Automatic Zoom and Pseudo Haptics to Sup-
port Semiautomatic Segmentation Tasks. In V. Skala (Ed.), 16th WSCG
2008, WSCG’2008 Full Papers Proceedings (pp. 81–88).: WSCG University
of West Bohemia. Full Paper.

[Schoor et al., 2008b] Schoor, W., Bollenbeck, F., Weier, D., Weschke, W.,
Preim, B., Seiffert, U., & Mecke, R. (2008b). VR-Based Visualization and
Exploration of Plant Biological Data. Journal of Virtual Reality and Broad-
casting. submitted.

[SGI Inc., 1999] SGI Inc. (1999). SGI R© OpenGL Vizserver
TM

3.5 Visualization
and Collaboration (Application-Transparent, Remote, Interactive). White
Paper.

[Shreiner et al., 2005] Shreiner, D., Woo, M., Neider, J., & Davis, T.
(2005). OpenGL(R) Programming Guide: The Official Guide to Learning
OpenGL(R), Version 2 (5th Edition) (OpenGL). Addison-Wesley Profes-
sional.

[Sun Microsystems, Inc., 2008] Sun Microsystems, Inc. (2008). Seeing the Fu-
ture with the Sun

TM
visualization system: Scaling, sharing, and scheduling

visualization resources. White Paper.

[Taubman & Marcellin, 2001] Taubman, D. S. & Marcellin, M. W. (2001).
JPEG 2000: Image Compression Fundamentals, Standards and Practice. Nor-
well, MA, USA: Kluwer Academic Publishers.

[Thibault et al., 2002] Thibault, S., Cavin, X., Festor, O., & Fleury, E. (2002).
Unreliable transport protocol for commodity-based opengl distributed visu-
alization. In Workshop on Commodity-Based Visualization Clusters, Boston,
MA.



[Web3D Consortium, Inc., 1998] Web3D Consortium, Inc. (1998). ISO/IEC
14772-1:1998: Information technology — Computer graphics and image pro-
cessing — The Virtual Reality Modeling Language — Part 1: Functional speci-
fication and UTF-8 encoding. International Organization for Standardization.

[Web3D Consortium, Inc., 2004] Web3D Consortium, Inc. (2004). ISO/IEC
19775-1:2004 Information technology — Computer graphics and image pro-
cessing: Extensible 3D (X3D) — Part 1: Architecture and base components.
International Organization for Standardization. URL: www.web3d.org/x3d/
specifications.

[Womack & Leech, 1998] Womack, P. & Leech, J. (1998). OpenGL graphics
with the X Window System, version 1.3. Technical report, Silicon Graphics,
Inc.

[Yoon & Neumann, 2000] Yoon, I. & Neumann, U. (2000). Ibrac: Image-based
rendering acceleration and compression. Eurographics 2000, Vol, 19, 321–330.

www.web3d.org/x3d/specifications
www.web3d.org/x3d/specifications

	Introduction
	Related Work
	Historical Outline
	Classification
	Existing Remote Visualization Tools
	Findings

	System Demands
	Clients Configuration
	Server Configuration
	Data Transfer
	Data Resources
	Visualization Aspects
	Findings

	The Concept of a Hybrid Remote Rendering Approach
	Hybrid Rendering
	Network Interconnect
	Architecture Adaption of the BioVizIt Platform

	Implementation and Results
	Conclusion
	Future Work
	Acknowledgments

