
Using Geometric Algebra for Navigation in Riemannian
and Hard Disc Space

Werner Benger
Center for Computation &

Technology
Louisiana State University

239 Johnston Hall
Baton Rouge, LA 70803, USA

werner@cct.lsu.edu

Andrew Hamilton
Center for Astrophysics and

Space Astronomy
JILA, University of Colorado

Boulder, CO 80309, USA
Andrew.Hamilton
@colorado.edu

Mike Folk/Quincey Koziol
The HDF Group

1901 So. First St. Suite C-2
Champaign, IL 61820. USA

mfolk@hdfgroup.org

Simon Su
Princeton Institute for

Computational Science and
Engineering

345 Peter B. Lewis Library
Princeton, NJ 08544, USA

simonsu@princeton.edu

Erik Schnetter
Center for Computation &

Technology
Dept. of Physics & Astronomy

Louisiana State University
Baton Rouge, LA 70803, USA

schnetter@cct.lsu.edu

Marcel Ritter/Georg Ritter
Department of Computer

Science
University of Innsbruck
Technikerstrasse 21a

A-6020 Innsbruck, Austria
csab7885@uibk.ac.at

ABSTRACT
A “vector” in 3D computer graphics is commonly under-
stood as a triplet of three floating point numbers, eventually
equipped with a set of functions operating on them. This
hides the fact that there are actually different kinds of vec-
tors, each of them with different algebraic properties and
consequently different sets of functions. Differential Geome-
try (DG) and Geometric Algebra (GA) are the appropriate
mathematical theories to describe these different types of
“vectors”. They consistently define the proper set of opera-
tions attached to each class of “floating point triplet” and al-
low to derive what meta-information is required to uniquely
identify a specific type of vector in addition to its purely
numerical values. We shortly review the various types of
“vectors” in 3D computer graphics, their relations to rota-
tions and quaternions, and connect these to the terminology
of co-vectors and bi-vectors in DG and GA. Not only in
3D, but also in 4D, the elegant formulations of GA yield
to more clarity, which will be demonstrated on behalf of
the use of bi-quaternions in relativity, allowing for instance
a more insightful formulation to determine the Newman-
Penrose pseudo scalars from the Weyl tensor.

1. INTRODUCTION
Geometric Algebra [14] and the sometimes mystified concept
of spinors eases implementation and intuition significantly,
both in computer graphics and in physics [15]. We demon-
strate the concrete application of these concepts in two in-
dependently developed computer graphic software packages,

where Geometric Algebra is used for navigating the cam-
era position in space and time. Another application exam-
ple is given by a simulation code solving Einstein’s equa-
tion in general relativity numerically on supercomputers,
outputting the Newman-Penrose pseudo scalars as primary
quantities of interest to study gravitational waves, both for
visualization and observational verification.

Geometric Algebra moreover provides means to describe
how the metadata information required per “vector” can be
provided in persistent storage. Given large datasets that are
expensively collected or generated by simulations requiring
millions of CPU hours, it is increasingly important and diffi-
cult to be able to share and correctly interpret such datasets
years after their generation, across different research groups
from different fields of science. A unique, standardized,
extensible identification of the geometric properties of the
dataset elements is a necessary pre-requisite for this. simi-
lar to the way in which the IEEE standard for floating point
values enables sharing floating point values. We utilize the
mechanisms as provided by the HDF5 library here, a generic
self-describing file format developed for large datasets as
used in high performance computing. It allows specifying
metadata in addition to the purely numerical data, providing
an abstraction layer for specifying the mathematical prop-
erties on top of the lower-level binary layout. It is therefore
desirable to us the functionality of this powerful I/O library
to express the semantics of vector quantities as they arise in
Geometric Algebra. This will be discussed in section 5.

2. VECTOR SPACES
A vector space over a field F (such as R) is a set V together
with two binary operations vector addition + : V × V → V
and scalar multiplication ◦ : F × V → V. The elements
of V are called vectors. A vector space is closed under the
operations + and ◦, i.e., for all elements u, v ∈ V and all el-
ements λ ∈ F there is u+ v ∈ V and λ ◦u ∈ V (vector space
axioms). The vector space axioms allow computing the dif-

ferences of vectors and therefore defining the derivative of a
vector-valued function v(s) : R→ V as

d

ds
v(s) := lim

ds→0

v(s+ ds)− v(s)

ds
. (1)

2.1 Tangential Vectors
In differential geometry, a tangential vector on a manifold
M is the operator d

ds
that computes the derivative along a

curve q(s) : R → M for an arbitrary scalar-valued function
f : M → R:

d

ds
f

∣∣∣∣
q(s)

:=
df (q(s))

ds
. (2)

Tangential vectors fulfill the vector space axioms and can
therefore be expressed as linear combinations of deriva-
tives along the n coordinate functions xµ : M → R with
µ = 0 . . . n− 1, which define a basis of the tangential space
Tq(s)(M) on the n-dimensional manifold M at each point
q(s) ∈M :

d

ds
f =

n−1∑
µ=0

dxµ (q(s))

ds

∂

∂xµ
f =:

n−1∑
µ=0

q̇µ∂µf (3)

where q̇µ are the components of the tangential vector d
ds

in
the chart {xµ} and {∂µ} are the basis vectors of the tangen-
tial space in this chart. We will use the Einstein sum conven-
tion in the following text, which assumes implicit summation
over indices occurring on the same side of an equation. Of-
ten tangential vectors are used synonymous with the term
“vectors” in computer graphics when a direction vector from
point A to point B is meant. A tangential vector on an
n-dimensional manifold is represented by n numbers in a
chart.

2.2 Co-Vectors
The set of operations df : T (M) → R that map tangential
vectors v ∈ T (M) to a scalar value v(f) for any function
f : M → R defines another vector space which is dual to the
tangential vectors. Its elements are called co-vectors.

< df, v >= df(v) := v(f) = vµ∂µf = vµ
∂f

∂xµ
(4)

Co-vectors fulfill the vector space axioms and can be written
as linear combination of co-vector basis functions dxµ:

df =:
∂f

∂xµ
dxµ (5)

with the dual basis vectors fulfilling the duality relation

< dxν , ∂µ >=

{
µ = ν : 1

µ 6= ν : 0
(6)

The space of co-vectors is called the co-tangential space
T ∗p (M). A co-vector on an n-dimensional manifold is repre-
sented by n numbers in a chart, same as a tangential vector.
However, co-vector transforms inverse to tangential vectors
when changing coordinate systems, as is directly obvious
from eq. (6) in the one-dimensional case: As < dx0, ∂0 >= 1
must be sustained under coordinate transformation, dx0

must shrink by the same amount as ∂0 grows when an-
other coordinate scale is used to represent these vectors.
In higher dimensions this is expressed by an inverse trans-
formation matrix, as demonstrated in Fig. 1. In Euclidean

Figure 1: Vector transformation under shrinking the
height coordinate by a factor of two: tangential vec-
tors (differences between two points) shrink in their
height component by a factor two as well, whereas
surface normal vectors (co-vectors) grow by a fac-
tor two in height, see the vertical components of the
vector and co-vector shown on the right hand side
in the figure.

three-dimensional space, a plane is equivalently described by
a “normal vector”, which is orthogonal to the plane. While
“normal vectors” are frequently symbolized via a vector ar-
row, like tangential vectors, they are not the same, rather
they are dual to tangential vectors. It is more appropri-
ate to visually symbolize them as a plane. This visual is
also supported by (5), which can be interpreted as the to-
tal differential of a function f : a co-vector describes how a
scalar function advances in space, which can be visualized
as surfaces of constant function value (“isosurface”). On an
n-dimensional manifold a co-vector is correspondingly sym-
bolized by an (n− 1)-dimensional subspace.

2.3 Tensors
A tensor T lm of rank l×m is a multi-linear map of l vectors
and m co-vectors to a scalar

T lm : T (M)× ...T (M)︸ ︷︷ ︸
l

×T ∗(M)× ...T ∗(M)︸ ︷︷ ︸
m

→ R . (7)

Tensors are elements of a vector space themselves and form
the tensor algebra. They are represented relative to a coor-
dinate system by a set of kl+m numbers for a k-dimensional
manifold. The construction of an tensor of higher rank from
lower rank is called the outer product (also known as tensor,
dyadic or Kronecker product), denoted by ⊗:

T ≡ Tµν∂µ ⊗ ∂ν = vµuν∂µ ⊗ ∂ν = vµ∂µ ⊗ uν∂ν = v ⊗ u (8)

Tensors of rank 2 may be represented using matrix notation.
Tensors of type T 0

1 are equivalent to co-vectors and called
co-variant, in matrix notation (relative to a chart) they cor-
respond to rows. Tensors of type T 1

0 are equivalent to a tan-
gential vector and are called contra-variant, corresponding
to columns in matrix notation. The duality relationship be-
tween vectors and co-vectors then corresponds to the matrix
multiplication of a 1× n row with a n× 1 column, yielding
a single number

< a, b >=< aµ∂µ, bµdx
µ > ≡ (a0a1 . . . an−1)


b0

b1

. . .
bn−1

 .

(9)
By virtue of the duality relationship (6) the contraction of
lower and upper indices is defined as the interior product ι
of tensors, which reduces the dimensionality of the tensor:

ι : Tmn × T lk → Tm−kn−l : (u, v) 7→ ιuv (10)

The interior product can be understood (visually) as a gen-
eralization of some“projection”of a tensor onto another one.

Of special importance are symmetric tensors of rank two
g ∈ T 0

2 with g : T (M)× T (M)→ R : u, v 7→ g(u, v) ≡ u · v ,
g(u, v) = g(v, u), as they can be used to define a metric on
the tangential vectors, also called the inner product or dot
product. Its inverse, defined by operating on the co-vectors,
is called the co-metric. A metric, same as the co-metric, is
represented as a symmetric n × n matrix in a chart for a
n-dimensional manifold.

Given a metric tensor, one can define equivalence relation-
ships between tangential vectors and co-vectors, which allow
to map one into each other. These maps are called the “mu-
sical isomorphisms”, [and], as they raise or lower an index
in the coordinate representation:

[: T (M)→ T ∗(M) : vµ∂µ 7→ vµgµνdx
ν (11)

] : T ∗(M)→ T (M) : Vµdx
µ 7→ Vµg

µν∂ν (12)

As an example application, the “gradient” of a scalar func-
tion is given by ∇f =]df using this notation. In Euclidean
space, the metric is represented by the identity matrix and
the components of vectors are identical to the components
of co-vectors. As computer graphics usually is considered
in Euclidean space, this justifies the usual negligence of dis-
tinction among vectors and co-vectors; consequently graph-
ics software only knows about one type of vectors which is
uniquely identified by its number of components. However,
when dealing with coordinate transformations or curvilinear
mesh types then distinguishing between tangential vectors
and co-vectors is unavoidable. Treating them both as the
same type within a computer program leads to confusions
and is not safe. Section 4 will address this issue.

2.4 Exterior Product
The exterior product ∧ : V × V → Λ2(V) (also known as
wedge product, Grassmann product, or alternating product)
generates vector space elements of higher dimensions from
elements of a vector space V by taking the antisymmetric
part of the outer product (eq. 8) as

u ∧ v =
1

2
(u⊗ v − v ⊗ u) (13)

The new vector space is denoted Λ2(V). With the exterior
product, v ∧ u = −u ∧ v ∀u, v ∈ V , which consequently
results in v ∧ v = 0 ∀ v ∈ V. The exterior product defines
an algebra on its elements, the exterior algebra (or Grass-
man algebra) [9, 5]. It is a sub-algebra of the Tensor algebra
consisting on the anti-symmetric tensors. The exterior al-
gebra is defined intrinsically by the vector space and does
not require a metric. For a given n-dimensional vector space
V, there can at most be n-th power of an exterior product,
consisting of n different basis vectors. The n + 1-th power
must vanish, because at least one basis vector would occur
twice, and there is exactly one basis vector for Λn(V).

Elements v ∈ Λk(V) are called k-vectors, whereby 2-vectors
are also called bi-vectors and 3-vectors trivectors. The num-
ber of components of an k-vector of an n-dimensional vector
space is given by the binomial coefficient

(
n
k

)
. For n = 2

there are two 1-vectors and one bi-vector, for n = 3 there are
three 1-vectors, three bi-vectors and one tri-vector. These
relationships are depicted by the Pascal’s triangle, with the
row representing the dimensionality of the underlying base
space and the column the vector type:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(14)

As can be easily read off, for a four-dimensional vector space
there will be four 1-vectors, six bi-vectors, four tri-vectors
and one 4-vector. The n-vector of a n-dimensional vector
space is also called a pseudo-scalar, the (n − 1) vector a
pseudo-vector.

2.5 Visualizing Exterior Products
An exterior algebra is defined on both the tangential vectors
and co-vectors on a manifold. A bi-vector v formed from
tangential vectors is written in chart as

v = vµν∂µ ∧ ∂ν , (15)

a bi-covector U formed from co-vectors is written in chart
as

U = Uµνdx
µ ∧ dxν . (16)

They both have
(
n
2

)
independent components, due to vµν =

−vνµ and Uµν = −Uνµ (three components in 3D, six compo-
nents in 4D). A bi-tangential vector (15) can be understood
visually as an (oriented, i.e., signed) plane that is spun by
the two defining tangential vectors, independently of the di-
mensionality of the underlying base space. A bi-co-vector
(16) corresponds to the subspace of an n-dimensional hy-
perspace where a plane is “cut out”. In three dimensions
these visualizations overlap: both a bi-tangential vector and
a co-vector correspond to a plane, and both a tangential
vector and a bi-co-vector correspond to one-dimensional di-
rection (“arrow”). In four dimensions, these visuals are
more distinct but still overlap: a co-vector corresponds to
a three-dimensional volume, but a bi-tangential vector is
represented by a plane similar to a bi-co-vector, since cut-
ting out a 2D plane from four-dimensional space yields a
2D plane again. Only in higher dimensions these symbolic
representations become unique.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Tangential Vectors
∂x

Co-Vectors /
Pseudo-Vectors

dxBi-Co-Vectors
dx^dy Bi-Vectors

∂x ^ ∂y

0D

1D

2D

3D

4D

5D

Figure 2: Pascal’s triangle showing the location
of tangential vectors, bi-vectors, co-vectors and bi-
covectors in the various subspaces in different di-
mensions. Especially in three dimensions there are
many overlaps, indicating ambiguities where differ-
ent quantities are all represented by “just three
numbers”. Similar situations occur in 4D, only in
5D all vector types become unambiguous.

However, in any case a co-vector and a pseudo-vector will
have the same appearance as an n − 1 dimensional hyper-
space, same as a tangential vector corresponds to an pseudo-
co-vector:

Vµdx
µ ⇔ vα0α1...αn−1 ∂α0 ∧ ∂α1 ∧ . . . ∂αn−1 (17)

vµ∂µ ⇔ Vα0α1...αn−1 dx
α0 ∧ dxα1 ∧ . . . dxαn−1 (18)

A tangential vector – lhs of (18) – can be understood as
one specific direction, but equivalently as well as “cutting
off” all but one n − 1-dimensional hyperspaces from an n-
dimensional hyperspace – rhs of (18). This equivalence is
expressed via the interior product of a tangential vector v
with an pseudo-co-scalar Ω yielding a pseudo-co-vector V
(19), similarly the interior product of a pseudo-vector with
an pseudo-co-scalar yielding a tangential vector (19):

ιΩ : T (M) → (T ∗)n−1(M) : V 7→ ιΩv (19)

ιΩ : Tn−1(M) → T ∗(M) : V 7→ ιΩv (20)

Pseudo-scalars and pseudo-co-scalars will always be scalar
multiples of the basis vectors ∂α0 ∧ ∂α1 ∧ . . . ∂αn and
dxα0 ∧ dxα1 ∧ . . . dxαn . However, under when inversing a
coordinate xµ → −xµ they flip sign, whereas a “true” scalar
does not. An example known from Euclidean vector algebra
is the allegedly scalar value constructed from the dot and
cross product of three vectors V (u, v, w) = u· (v×w) which
is the negative of when its arguments are flipped:

V (u, v, w) = −V (−u,−v,−w) = −u· (−v ×−w) . (21)

which is actually more obvious when (21) is written as ex-
terior product:

V (u, v, w) = u ∧ v ∧ w = V ∂0 ∧ ∂1 ∧ ∂2 (22)

The result (22) actually describes a multiple of a volume
element span by the basis tangential vectors ∂µ - any vol-
ume must be a scalar multiple of this basis volume element,

but can flip sign if another convention on the basis vec-
tors is used. This convention depends on the choice of a
right-handed versus left-handed coordinate system, and is
expressed by the orientation tensor Ω = ±∂0 ∧ ∂1 ∧ ∂2. In
computer graphics, both left-handed and right-handed co-
ordinate systems occur, which often causes confusion.

By combining (20) and (12) – requiring a metric – we get a
map from pseudo-vectors to vectors and reverse. This map
is known as the Hodge star operator “∗”:

∗ : Tn−1(M)→ T (M) : V 7−→]ιΩV (23)

The same operation can be applied to the co-vectors accord-
ingly, and generalized to all vector elements of the exterior
algebra on a vector space, establishing a correspondence be-
tween k−vectors and n−k-vectors. The Hodge star operator
allows to identify vectors and pseudo-vectors, similarly to
how a metric allows to identify vectors and co-vectors. The
Hodge star operator requires a metric and an orientation Ω.

A prominent application in physics using the hodge star op-
erator are the Maxwell equations, which, when written based
on the four-dimensional potential A = V0dx

0 + Akdx
k (V0

the electrostatic, Ak the magnetic vector potential) take the
form

d ∗ dA = J (24)

with J the electric current and magnetic flow, which is zero
in vacuum. The combination d ∗ d is equivalent to the
Laplace operator “2”, which indicates that (24) describes
electromagnetic waves in vacuum.

2.6 Geometric Algebra
Geometric Algebra is motivated by the intention to find a
closed algebra on a vector space with respect to multiplica-
tion, which includes existence of an inverse operation. There
is no concept of dividing vectors in “standard” vector alge-
bra. Because the result of the inner and exterior product is
of different dimensionality than their operands, they are not
suited to define a closed GA on the vector space.

Geometric algebra postulates a product on elements of a
vector space u, v, w ∈ V that is associative, (uv)w = u(vw),
left-distributive u(v+w) = uv+ uw, right-distributive (u+
v)w = uw+vw, and reduces to the inner product as defined
by the metric v2 = g(v, v). It can be shown that the sum of
the exterior product (which, within Geometric Algebra, is
also called outer product, but should not be confused with
the outer product ⊗ on tensors from eq. 8) and the inner
product fulfill these requirements; this defines the geometric
product as the sum of both:

uv := u ∧ v + u · v . (25)

Since u∧ v and u · v are of different dimensionality (
(
n
2

)
and(

n
0

)
, respectively), the result must be in a higher dimensional

vector space of dimensionality
(
n
2

)
+
(
n
0

)
. This space, called

Λ(V), is formed by the linear combination of k-vectors:

Λ(V) =

n⊕
k=0

Λk(V) . (26)

Its elements are called multivectors. The dimensionality of
Λ(V) is

∑n
k=0

(
n
k

)
≡ 2n.

Figure 3: Graphical representation of the 1+3+3+1
structure of components that build a 3D multivec-
tor: three tangential vectors, three oriented planes,
one scalar and one (oriented) volume element.

For instance, in two dimensions the dimension of the space
of multivectors is 22 = 4. A multivector V , constructed from
tangential-vectors on a two-dimensional manifold, is written
as

V = V 0 + V 1∂0 + V 2∂1 + V 3∂0 ∧ ∂1 (27)

with V µ the four components of the multivector in a chart.
For a three-dimensional manifold a multivector on its tan-
gential space has 23 = 8 components and is written as

V =V 0+

V 1∂0 + V 2∂1 + V 2∂2+

V 4∂0 ∧ ∂1 + V 5∂1 ∧ ∂2 + V 6∂2 ∧ ∂0+

V 7∂0 ∧ ∂1 ∧ ∂2

(28)

with V µ the eight components of the multivector in a chart.
The components of a multivector have a direct visual in-
terpretation, which is one of the key features of geometric
algebra. In 3D, a multivector is the sum of a scalar value,
three directions, three planes and one volume. These basis
elements span the entire space of multivectors.

2.7 Spinors and Quaternions
Given a bi-vector U = u∧v built from two orthonormal unit
vectors u, v (which fulfill |u| = 1, |v| = 1, u · v = 0 under a
given metric such that U = uv), we find that it provides the
same algebraic properties as the imaginary unit

√
−1:

U2 = UU = (uv)(uv) = (uv)(−vu) = −u(vv)u = −1 (29)

This is a well known aspect of Geometric Algebra, which
leads to

(
n
2

)
distinct imaginary units on an n-dimensional

vector space. For n = 3 we have three imaginary units (usu-
ally denoted as i, j, k), which relate to the three bi-vectors
along the three coordinate axis. These three basis vectors
i = ∂x ∧ ∂y, j = ∂y ∧ ∂z, k = ∂z ∧ ∂x (equivalently to the co-
vectors) fulfill ijk = −1, which is identical to the definitions

used in quaternion algebra [7]. A quaternion consists of four
components, a scalar and “vectorial” part. They represent
the even parts of a multivector in 3D (28):

Q = Q0 +Q2∂0 ∧ ∂1 +Q0∂1 ∧ ∂2 +Q1∂2 ∧ ∂0 (30)

It can be shown that the even multivectors form a closed sub-
algebra itself. GA provides a direct geometric insight for
quaternions via (30), with the hard-to-memorable quater-
nion product being immersed within the easily remember-
able geometric product. Given an even multivector (30),
its dual as provided by the Hodge star operator (23) yields
an odd multivector, consisting of a tangential vector and a
pseudo-scalar (i.e., a volume element).

Quaternions are known in computer graphics for implement-
ing rotations (for instance, the SbRotation class in Open-
Inventor), alternatively to rotation matrices (such as used
in OpenGL). The same functionality is provided by ro-
tors in GA. In 2D the right-multiplication of a vector
v = vx∂x + vy∂y with the bi-vector ∂x ∧ ∂y = ∂x∂y cor-
responds to a counter-clockwise rotation by π/2:

v(∂x ∧ ∂y) = vx∂x(∂x∂y) + vy∂y(∂x∂y) = vx∂y − vy∂x (31)

Therefore a rotation by an arbitrary angle ϕ is written as
a linear combination of a scalar component and a bi-vector,
which is called a rotor (or spinor):

R = cosϕ+ i sinϕ ≡ eiϕ (32)

where i is an arbitrary unit bi-vector fulfilling i2 = −1.
e is the Euler number used here for defining the exponen-
tial function of a bi-vector, in style of the Euler equation.
The inverse rotor (implementing clockwise rotation on right-
multiplication, or counter-clockwise when applied from the
left) is given by inverting the rotation angle

R−1 = e−iϕ = cosϕ− i sinϕ . (33)

In two dimensions it is equivalent whether some vector v is
left-multiplied or right-multiplied with a rotor

vR−2 ≡ R2v ≡ RvR−1 , (34)

however in more than two dimensions the symmetric variant
RvR−1 with multiplying from the left and from the right
has to be used to cancel out a tri-vector component that
would otherwise occur (from multiplying the vector with a
the bi-vector part of the rotor). While Quaternion Algebra
is specific to three dimensions, the concept of a rotor in GA
is independent from the dimensions and directly applicable
to the 4D case, as will be reviewed in the next section.

2.8 Multilinear Multivector Maps
Same as a tensor is a multilinear map of vectors and co-
vectors, we may represent multilinear maps of multivectors
as a set of numbers given a specific chart. The Riemann
tensor R, as described in 3.3, is such a case, is it can be seen
as a map from bivectors to bivectors:

R : Tp(M) ∧ Tp(M)→ Tp(M) ∧ Tp(M) (35)

The Riemann tensor can then be interpreted as argument of
the Lorentz boost eR(U) resulting from a tiny circuit within
a plane defined by the bivector U .

Figure 4: The two linear polarizations of gravita-
tional waves. The + polarization (top) has a cos 2χ
shape about the direction of propagation (into the
paper), while the × polarization (bottom) has a
sin 2χ shape. A gravitational wave causes a system
of freely falling test masses to oscillate relative to a
grid of points a fixed proper distance apart.

3. NEWMAN-PENROSE FORMALISM
General relativity predicts the existence of gravitational
waves. There is a huge effort to detect gravitational waves
expected for example from merging pairs of black holes [1].
To date no gravitational waves have been detected directly.
There is however indirect evidence for their existence from
the gradual decrease in orbital period of the binary pulsar,
which is quantitatively consistent with the general relativis-
tic prediction of energy loss by quadrupole emission of grav-
itational waves [4, 6].

It is conventional to characterize gravitational waves in
terms of their Newman-Penrose (1962) (NP) components
[16, 2, 18]. The purpose of this section is to give an idea
of how this works, and how the geometric algebra offers in-
sight into the NP formalism. The traditional derivation of
the NP components of gravitational waves is magical, and
shrouded in unnecessary and misleading notation. As Held
(1974) [13] politely puts it, the NP formalism presents “a
formidable notational barrier to the uninitiate”.

The notion of a gravitational wave can be perplexing. A
passing gravitational wave causes the distance between two
freeling-falling masses to oscillate. But if gravity affects the
very measurement of length itself, how can the distance be-

tween the masses be measured? The answer is that, despite
the fact that in general relativity spacetime has no absolute
existence, in the sense that the choice of coordinate system
is arbitrary, nevertheless the metric asserts that there is a
unique proper distance along a given path (or affine distance,
along a null path) between any two points in spacetime (such
as the path followed by a beam of laser light). The presence
of gravity, or curvature, is expressed by the presence of a
gravitational force between two points a fixed proper dis-
tance apart. A gravitational wave causes an oscillation in
the differential gravitational force, or tidal force, between
two points a fixed distance apart.

Figure 4 illustrates gravitational waves, in their two possi-
ble linear polarizations, + and ×. The grid represents a lo-
cally inertial system of points a fixed proper distance apart.
The superposed ellipses represent a system of freely-falling
test masses whose positions, initially on a circle, are be-
ing perturbed by a gravitational wave moving in a direction
perpendicular to the paper. The proper distance between
freely-falling test masses oscillates. That oscillation can be
measured for example by the change in the number of wave-
lengths along a laser beam between the masses.

Sometimes one sees depictions of gravitational waves simi-
lar to Figure 4, but with the grid oscillating along with the
ellipses. Such depictions are intended to convey the idea
that gravitational waves are waves of spacetime (of the met-
ric), but they are misleading, since they suggest that rulers
oscillate along with the test masses, which is false.

3.1 Newman-Penrose tetrad
The Newman-Penrose (NP) formalism is particularly well
adapted to treating waves that travel at the speed of light,
which includes electromagnetic and gravitational waves.
The NP formalism starts with the rest frame of an observer,
and applies two tricks to it. The axes, or tetrad, of the ob-
server’s locally inertial frame form an orthonormal basis of
vectors in the geometric algebra

{γt,γx,γy,γz} , (36)

with the metric in Minkowski signature of the form

γm · γn =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (37)

with indices m, n running over t, x, y, z. The NP formalism
chooses one axis, typically the z-axis, to be the direction of
propagation of the wave.

The first NP trick is to replace the transverse axes γx and
γy by spinor axes γ+ and γ− defined by

γ+ ≡
1√
2

(γx + Iγy) , γ− ≡
1√
2

(γx − Iγy) . (38)

This is the same trick used to define the spinor components
L± of the angular momentum operator L in quantum me-
chanics.

The second NP trick is to replace the time t and propaga-
tion z axes with outgoing and ingoing null axes γv and γu,

defined by

γv ≡
1√
2

(γt + γz) , γu ≡
1√
2

(γt − γz) . (39)

The resulting outgoing, ingoing, and spinor axes form a NP
null tetrad

{γv,γu,γ+,γ−} , (40)

with NP metric

γm · γn =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (41)

with indices m, n running over v, u,+,−. The NP met-
ric (41) has zeros down the diagonal. This means that each
of the four NP axes γm is null: the scalar product of each
axis with itself is zero. In a profound sense, the null, or light-
like, character of each the four NP axes explains why the NP
formalism is well adapted to treating fields that propagate
at the speed of light.

Three kinds of transformation, considered further below,
take a particularly simple form in the NP tetrad:

I Reflections through the transverse axis y;
II Rotations about the propagation axis z;

III Boosts along the propagation axis z.

3.1.1 Reflections
Under transformation I, a reflection through the y-axis, the
spinor axes swap:

γ+ ↔ γ− , (42)

which may also be accomplished by complex conjugation.
Reflection through the y-axis, or equivalently complex con-
jugation, changes the sign of all spinor indices of a tensor
component

+↔ − . (43)

In short, complex conjugation flips spin, a pretty feature of
the NP formalism.

3.1.2 Rotations
Under transformation II, a right-handed rotation by angle
χ about the direction z of propagation, the transverse axes
γx and γy transform as

γx → cosχ γx − sinχ γy ,

γy → sinχ γx + cosχ γy . (44)

It follows that the spinor axes γ+ and γ− transform under
a right-handed rotation by angle χ as

γ± → e±Iχ γ± . (45)

The transformation (45) identifies the spinor axes γ+ and
γ− as having spin +1 and −1 respectively. More generally,
an object can be defined as having spin s if it varies by

esIχ (46)

under a rotation by angle χ about the direction of propaga-
tion. The NP components of a tensor inherit spin properties

from that of the spinor basis. The general rule is that the
spin s of any tensor component is equal to the number of +
covariant indices minus the number of − covariant indices:

spin s = number of + minus − covariant indices . (47)

3.1.3 Boosts
The final transformation III, a boost along the z-axis, multi-
plies the outgoing and ingoing axes γv and γu by a blueshift
factor ε and its reciprocal

γv → εγv ,

γu → (1/ε)γu . (48)

If the observer boosts by velocity v in the z-direction away
from the source, then the blueshift factor is the special rel-
ativistic Doppler shift factor

ε =

(
1− v
1 + v

)1/2

. (49)

The exponent n of the power εn by which an object changes
under a boost along the z-axis is called its boost weight.
Thus γv has boost weight +1, and γu has boost weight −1.
The NP components of a tensor inherit their boost weight
properties from those of the NP basis. The general rule is
that the boost weight n of any tensor component is equal
to the number of v covariant indices minus the number of u
covariant indices:

boost weight n = number of v minus u covariant indices .
(50)

3.2 Electromagnetic waves
The properties of gravitational waves are in many ways sim-
ilar to those of electromagnetic waves. Both kinds of waves
are massless, traveling at the speed of light. A crucial dif-
ference is that gravitational waves are spin-2 (tensor) waves,
whereas electromagnetic waves are spin-1 (vector) waves.

Recall the nature of electromagnetic waves. Electromag-
netic waves are characterized by the electromagnetic field
Fij , which is an antisymmetric tensor, or bivector, with 6
distinct components. The 6 components are commonly col-
lected into two 3-dimensional vectors, the electric and mag-
netic fields E and B. The geometric algebra gives the insight
that the electromagnetic field tensor, being a bivector, has
a natural complex structure, in which the electric and mag-
netic fields together form a complex 3-vector E + IB.

With respect to a NP null tetrad (40), the electromagnetic
bivector has 3 complex components, of spin respectively −1,
0, and +1, in accordance with the rule (47):

− 1 : Fu−

0 :
1

2
(Fuv + F+−)

+1 : Fv+ . (51)

The complex conjugates of the 3 components are:

− 1∗ : Fu+

0∗ :
1

2
(Fuv − F+−)

+1∗ : Fv− , (52)

whose spins have the opposite sign. Conventionally (Chan-
drasekhar 1983), the 3 complex spin components of the elec-
tromagnetic field bivector in the NP formalism are denoted

− 1 : φ2 ,

0 : φ1 ,

+1 : φ0 . (53)

The notation, like much of the rest of conventional NP no-
tation, is truly awful.

For outgoing electromagnetic waves, only the spin −1
component propagates, carrying electromagnetic energy far
away from a source:

− 1 : propagating, outgoing . (54)

This propagating, outgoing −1 component has spin −1, but
its complex conjugate has spin +1, so effectively both spin
components, or helicities, of an outgoing wave are embodied
in the single complex component. The remaining 2 complex
NP components (spins 0 and 1) of an outgoing wave are
short range, describing the electromagnetic field near the
source.

Similarly, for ingoing waves, only the spin +1 component
propagates.

The isolation of each propagating mode into a single com-
plex NP mode, incorporating both helicities, is simpler than
the standard picture of oscillating orthogonal electric and
magnetic fields.

3.3 Gravitational waves
In electromagnetism, the electromagnetic field tensor is de-
fined by the commutator of the gauge-covariant derivative.
In general relativity, the analogous commutator of the co-
variant derivative is the Riemann curvature tensor Rklmn.
The Riemann curvature tensor has symmetries which can be
designated shorthandly

R([kl][mn]) . (55)

Here [] denotes antisymmetry, and () symmetry. The desig-
nation (55) thus signifies that the Riemann curvature tensor
Rklmn is antisymmetric in its first two indices kl, antisym-
metric in its last two indices mn, and symmetric under ex-
change of the first and last pairs of indices, kl ↔ mn. In
addition to the symmetries (55), the Riemann curvature ten-
sor has the totally antisymmetric symmetry

Rklmn +Rkmnl +Rknlm = 0 . (56)

The symmetries (55) imply that that the Riemann curva-
ture tensor is a symmetric matrix of antisymmetric tensors,
which is to say, a 6 × 6 symmetric matrix of bivectors. A
6×6 symmetric matrix has 21 independent components. The
additional condition (56) eliminates one degree of freedom,
leaving the Riemann curvature tensor with 20 independent
components.

In spacetime algebra any bivector U (6 component) can be
written as complex sum U = (E + IB)γt of two spatial 3-
vectors E = Exγx +Eyγy +Bzγz and B = Bxγx +Byγy +
Bzγz, due to the identity Iγxγt ≡ γyγz etc. In analogy to

electromagnetism, Eγt is called the electric bivector, Bγt
the magnetic bivector. The Riemann tensor, a multilinear
multimap on bivectors eq. (35), can then be organized into
a 2× 2 matrix of 3× 3 blocks with bivector indices, yielding
the structure (

REE REB
RBE RBB

)
. (57)

The condition of being symmetric implies that REE and
RBB are symmetric, while RBE = (REB)>. The condi-
tion (56) states that the 3×3 block REB (and likewise RBE)
is traceless.

The natural complex structure of bivectors in the geomet-
ric algebra suggests recasting the 6 × 6 Riemann curvature
matrix (57) into a 3× 3 complex matrix, which would have
the structure (RE + IRB)(RE + IRB), or equivalently

REE −RBB + I(REB +RBE) , (58)

which is a complex linear combination of the four 3×3 blocks
of the Riemann matrix (57). However, it turns out that the
complex symmetric 3×3 matrix (58) encodes only part of the
Riemann curvature tensor, namely the Weyl tensor. More
specifically, the Riemann curvature tensor decomposes into
a trace part, the Ricci tensor Rkm, and a totally traceless
part, the Weyl tensor Cklmn. The Ricci tensor, which is sym-
metric, has 10 independent components. The Weyl tensor,
which inherits the symmetries (55) and (56) of the Rieman
tensor, and in addition vanishes on contraction of any pair
of indices, also has 10 independent components. Together,
the Ricci and Weyl tensors account for the 20 components
of the Riemann tensor. The components of the Ricci and
Weyl tensors, though algebraically independent, are related
by the differential Bianchi identities.

The end result is that the Weyl tensor, the traceless part
of the Riemann curvature tensor, can be written as a 3× 3
complex traceless symmetric matrix (58). Such a matrix has
5 distinct complex components.

In empty space (vanishing energy-momentum tensor), the
Ricci tensor vanishes identically. Thus the properties of the
gravitational field in empty space are specified entirely by
the Weyl tensor. In particular, gravitational waves are spec-
ified entirely by the Weyl tensor.

When the 5 complex components of the Weyl tensor are
expressed in a NP null tetrad (40), the result is 5 complex
components, of spins respectively −2, −1, 0, +1, and +2:

− 2 : Cu−u−

−1 : Cuvu−

0 :
1

2
(Cvuvu + Cvu−+)

+1 : Cvuv+ (59)

+2 : Cv+v+ . (60)

It can be shown that these 5 complex components exhaust
the degrees of freedom of the Weyl tensor.

For outgoing gravitational waves, only the spin −2 com-
ponent propagates, carrying gravitational waves to far dis-

Figure 5: Volume rendering of the gravitational ra-
diation during a binary black hole merger, repre-
sented by the real part of Weyl scalar r · ψ4.

tances:

− 2 : propagating, outgoing . (61)

This propagating, outgoing −2 component has spin −2, but
its complex conjugate has spin +2, so effectively both spin
components, or helicities, or polarizations, of an outgoing
wave gravitational wave are embodied in the single com-
plex component. The remaining 4 complex NP components
(spins −1 to 2) of an outgoing gravitational waves are short
range, describing the gravitational field near the source.

Conventionally (Chandrasekhar 1983), the 5 complex spin
components of the Weyl tensor in the NP formalism are
impenetrably denoted

− 2 : ψ4 ,

−1 : ψ3 ,

0 : ψ2 ,

+1 : ψ1

+2 : ψ0 . (62)

Thus the component ψ4 represents propagating, outgoing
gravitational waves. The real part of ψ4 represents the
cos(2χ), or +, polarization of the propagating gravita-
tional wave, while (minus) its imaginary part represents the
sin(2χ), or ×, polarization, Figure 4. Next time you see
an illustration of gravitational waves where the caption says
that ψ4 is plotted, that’s what it is (see figure 5). We con-
sider the formulation of the NP scalars as presented here
much easier to understand than the usual approach, such as
e.g. [18].

4. IMPLEMENTING VECTORS IN C++
As demonstrated in section 2, denoting a vector by just
its dimensionality n is insufficient to completely identify
its algebraic properties including coordinate transformation
rules. Additional information is needed, such as the number
of covariant and contra-variance indices.

4.1 Class Hierarchy
Let us denote an array of fixed size N over some type T as
FixedArray<T,N>, using C++ template notation. No alge-
braic operation shall be defined on this type, it just serves
as a container for numbers, forming an N -tupel of T ’s. This

definition serves as a base class for a type Vector<T,N>,
which does not add new data members but only adds oper-
ators for addition of Vector<T,N>’s and multiplication with
scalar values, yielding objects of type Vector<T,N> again.

FixedArray<T,N>→ Vector<T,N> (63)

The resulting class Vector<T,N> is a vector in the algebraic
sense. It is convenient to make use of matrix algebra in many
cases, and since matrices have vector space properties, to
express such by deriving the Matrix class from the general
Vector class:

Vector<T,N*M>→ Matrix<T,N,M> (64)

The matrix class will add the concept of a matrix prod-
uct to the general vector space elements. A convenient,
though not required, intermediate definition is to define rows
and columns – they are rather type definitions than derived
classes:

Matrix<T,1,M> → Row<T,M> (65)

Matrix<T,N,1> → Column<T,N> (66)

These definitions of provide a the basis of vector types to be
used on the tangential space of a manifold. For a given N ,T
the following classes are derived:

FixedArray<T,N> → point (67)

Row<T,N> → covector (68)

Column<T,N> → tvector (69)

Vector < T, N2 − N(N + 1)/2 > → bivector (70)

Vector < T, 1 + N
2 − N(N + 1)/2 > → rotor (71)

Vector < T, 2N > → mulvector(72)

The definition of (68) and (69) directly implements the du-
ality relationship (6) in a type-safe way. Tangential vectors
and co-vectors both have vector space properties by virtue
of (64), but are different types, yet with the property that
their product (inherited from the matrix product) yields a
scalar. A point (67) by itself has no algebraic properties,
it only provides coordinates. However, the difference be-
tween two points is to be defined to yield a tangential vector
(69). On tvectors and covectors usual matrix operations
are inherently defined, so existing algorithms – that are usu-
ally provided using matrix algebra – can still be applied to
them. However, objects that directly implement operations
from Geometric Algebra such as bivector, rotor and mul-

tivector are safe from being used as parameters to matrix
algebra, yet they inherit vector space properties. We can
not show the actual implementation of the operations here
due to space limitations; it is sufficient to emphasize that,
by using C++ operator overloading, the API can be made
very close to the mathematical notation. In addition it is
convenient to overload the function call operator “()” for
rotor objects to denote them to be applied to a vector ob-
ject, meaning “R(v)” := RvR−1. This operator will be used
in the following code excerpts.

4.2 Camera Navigation using GA
A“camera” in the Vish [8] visualization framework is defined
through an observer’s location P , a point that is looked at L,
and an horizontal view plane, which is given as a bi-vector
U corresponding to the “upwards” direction. The difference
t = L− P gives the view direction, a tangential vector.

One algorithm for camera navigation is to rotate the camera
by an angle ϕ horizontally around the point of interest L
and by an angle ϑ “upwards” along the line of sight. This
algorithm is easily expressed in terms of geometric algebra.
First we define the view plane V as

V := t ∧ ∗U (73)

and then construct two rotors, a horizontal one and a vertical
one

RH := eU/|U| ϕ (74)

RV := e V/|V | ϑ (75)

Now the camera motion is achieved by computing the new
observer location by adding the rotated view direction to
the point of interest:

Pnew = L+ (RHRV) (t) (76)

Finally, the horizontal view plane needs to be adjusted as
well by the vertical rotation

Unew = RV U (77)

This algorithm can directly be implemented in six C++
source code statements:

void Rotate(Camera&TheCamera,
double phi, double theta)

{
tvector t = TheCamera.Observer - TheCamera.LookAt;

bivector VerticalPlane = (t ^ *TheCamera.Up).unit();

rotor HorizontalRotation = exp(TheCamera.Up , phi),
VerticalRotation = exp(VerticalPlane, theta);

TheCamera.Up *= VerticalRotation;

TheCamera.Observer = TheCamera.LookAt +
(VerticalRotation*HorizontalRotation)(t);

}

Another algorithm will rotate the camera around the view
direction. This is trivial to implement, since we just need
the rotor Rt that corresponds to the view direction, which is
given by the exponential of from the dual of the sight vector
(a bi-vector),

Rt = eϕ∗(P−L)/|P−L| , (78)

and apply this to the camera’s Up-bivector to rotate it. The
corresponding C++ source code is accordingly simple:

double RotateAroundViewdir(Camera&theCamera, double phi)
{
tvector t = (Camera.Observer - Camera.LookAt).unit();
rotor ViewRotor = exp(*t, phi);

Camera.Up = ViewRotor(Camera.Up);
}

This formulation is considered to be much simpler than an
equivalent formulation using matrices and objects like “axial
vectors”. Using the operations and involved objects is very
intuitive once their meaning in the Geometric Algebra has
become clear.

4.3 Relativistic observers in the BHFS
4.3.1 The BHFS

The Black Hole Flight Simulator (BHFS) is general rela-
tivistic software that can be used to visualize black holes.
The BHFS remains work in progress, but has already been
used in a number of productions, including the large-format
high-resolution dome show “Black Holes: The Other Side
of Infinity” (2006, Denver Museum of Nature and Science),
and the TV documentaries “Monster of the Milky Way”
(2006, NOVA-PBS), and“Monster Black Hole”(2008, Naked
Science series, National Geographic). Figure 6 illustrates
three frames from a sequence rendered for the National Ge-
ographic documentary.

The BHFS provides a complete implementation of the
Reissner-Nordström geometry of a charged black hole, in-
cluding its analytic connections inside the horizon to worm-
holes, white holes, and other universes. Real astronomical
black holes probably have little charge, but they probably
do rotate rapidly. A charged black hole is often taken as a
surrogate for a rotating black hole, since the interior struc-
ture of a spherical charged black hole resembles that of a
rotating black hole, but is much easier to model.

The Reissner-Nordström geometry, like its rotating coun-
terpart the Kerr-Newman geometry, is subject to the rel-
ativistic counter-streaming instability at the inner horizon
first pointed out by Poisson & Israel (1990) [17], and called
by them “mass inflation” (see Hamilton & Avelino 2009 [12]
for a review). The inflationary instability is expected to
eliminate the wormhole and white hole connections inside
realistic (astronomical) black holes.

4.3.2 Lorentz rotors in the BHFS
In addition to volume-rendering, the BHFS implements
quasi-rigid objects, called “Ships”, which by default move
along geodesics in the black hole geometry. The camera
(observer) is attached to one of the Ships. The orientation
and motion of the camera are defined by a Lorentz transfor-
mation (which includes both a spatial rotation and a Lorentz
boost), or equivalently, by a Lorentz rotor.

A Lorentz rotor R is a unimodular member of the even el-
ements of the spacetime algebra. A Lorentz rotor can be
written

R = eθ (79)

where θ is a bivector in the spacetime algebra. The corre-
sponding inverse Lorentz rotor is the reverse R̄

R̄ = e−θ . (80)

The condition of being unimodular means R̄R = 1.

The even spacetime algebra is isomorphic to the algebra of
complex quaternions, also called biquaternions. A complex
quaternion can be written

q = qR + IqI (81)

where qR and qI are two real quaternions comprising the
real and imaginary parts of the complex quaternion q

qR = ixR+jyR+kzR+wR , qI = ixI+jyI+kzI+wI . (82)

Figure 6: Three frames from a 3000-frame general relativistic volume-rendering with the BHFS of a general
relativistic magnetohydrodynamic supercomputer simulation of a disk and jet around a black hole (John
Hawley, 2007, private communication). The three frames show, from left to right, (a) outside the black
hole, (b) passing through the black hole’s outer horizon, (c) hitting the black hole’s inner horizon, where
the infinite blueshift and energy density triggers the mass inflation instability (Poisson & Israel 1990). The
background texture was created from a 3D model of the Milky Way by Donna Cox’s team at NCSA. The
sequence was prepared for “Monster Black Hole”, an episode of National Geographic’s Naked Science series.

The imaginary I is the pseudoscalar of the spacetime alge-
bra. It commutes with the quaternionic imaginaries i, j, k.
The quaternionic imaginaries themselves satisfy

i2 = j2 = k2 = −1 , ijk = 1 , (83)

from which it follows that the quaternionic imaginaries an-
ticommute between each other, for example ij = −k = ji.
The convention ijk = 1, equation (83), agrees with the
convention for quaternions in OpenGL, but is opposite
to William Rowan Hamilton’s carved-in-stone convention
ijk = −1. In OpenGL, rotations accumulate to the right: a
rotation R = R1R2 means rotation R1 followed by rotation
R2.

The BHFS stores a complex quaternion q as an 8-component
object

q =

(
xR yR zR wR
xI yI zI wI

)
. (84)

The reverse q̄ of the complex quaternion q is its quaternionic
conjugate

q̄ =

(
−xR −yR −zR wR
−xI −yI −zI wI

)
. (85)

The group of Lorentz transformations, or Lorentz rotors,
corresponds to complex quaternions of unit modulus. The
unimodular condition R̄R = 1, a complex condition, re-
moves 2 degrees of freedom from the 8 degrees of freedom
of complex quaternions, leaving the Lorentz group with 6
degrees of freedom, which is as it should be.

Spatial rotations correspond to real unimodular quater-
nions, and account for 3 of the 6 degrees of freedom of
Lorentz transformations. A spatial rotation by angle θ right-
handedly about the x-axis is the real Lorentz rotor

R = cos(θ/2) + i sin(θ/2) , (86)

or, stored as a complex quaternion,

R =

(
sin(θ/2) 0 0 cos(θ/2)

0 0 0 0

)
. (87)

Lorentz boosts account for the remaining 3 of the 6 degrees
of freedom of Lorentz transformations. A Lorentz boost by
velocity v, or equivalently by boost angle θ = atanh(v),
along the x-axis is the complex Lorentz rotor

R = cosh(θ/2) + Ii sinh(θ/2) , (88)

or, stored as a complex quaternion,

R =

(
0 0 0 cosh(θ/2)

sinh(θ/2) 0 0 0

)
. (89)

4.3.3 Simplicity of Lorentz rotors
The advantages of quaternions for implementing spatial ro-
tations are well-known to 3D game programmers. Compared
to standard rotation matrices, quaternions offer increased
speed and require less storage, and their algebraic proper-
ties simplify interpolation and splining.

Complex quaternions retain similar advantages for imple-
menting Lorentz transformations. They are fast, compact,
and straightforward to interpolate or spline.

Under a spacetime rotation by Lorentz rotor R, a general
multivector a in the spacetime algebra transforms as

a→ R̄aR . (90)

A general such multivector in the spacetime algebra is a
16-component object, with 8 even components, and 8 odd
components.

As remarked earlier, the 8-component even spacetime subal-
gebra is isormorphic to the algebra of complex quaternions.
As an example, the electromagnetic field constitutes a 6-
component bivector, an even element of the spacetime al-
gebra. The electric and magnetic fields E and B can be

encoded as the complex quaternion

F =

(
Ex Ey Ez 0
Bx By Bz 0

)
. (91)

The transformation (90) then becomes

F → R̄FR , (92)

which is a powerful and elegant way to Lorentz transform
the electromagnetic field. The electromagnetic field F in the
transformation (92) is the complex quaternion (91), and the
rotor R is another complex quaternion, so the Lorentz trans-
formation (92) amounts to multiplying 3 complex quater-
nions, a one-line expression in a c++ program.

The most common need in the BHFS is to Lorentz transform
odd multivectors, not even multivectors. For example, every
point on a scene that an observer sees is represented by
the energy-momentum 4-vector of a photon emitted by the
point and observed by the observer. Each such 4-vector
a = amγm is an odd multivector in the spacetime algebra.
A general odd multivector is a sum of a vector part a and a
pseudovector part Ib. The odd multivector can be written
as a product of γt (the time basis element of the spacetime
algebra) and an even multivector q

a+ Ib = γtq (93)

where q is the even multivector, or complex quaternion,

q =

(
−bx −by −bz at

ax ay az bt

)
. (94)

The Lorentz transformation (90) implies γtq → R̄γtqR =
γtR̄

∗qR, where ∗ denotes complex conjugation with respect
to the peudoscalar imaginary I. It follows that the complex
quaternion q, equation (94), transforms as

q → R̄∗qR . (95)

The transformation (95) of the complex quaternion (94) pro-
vides a simple and elegant way to Lorentz transform a 4-
vector am and 4-pseudovector Ibm. Since bm (without the
I factor) is just another 4-vector, the transformation (95)
effectively transforms two 4-vectors, am and bm, simultane-
ously. The transformation (95) amounts to multiplying 3
complex quaternions, a one-line expression in a c++ pro-
gram.

5. VECTORS ON THE HARD DISK
5.1 Meta-Data on Vector Types
Storing a specific vector on hard disk, entails storing its nu-
merical representation in a chosen coordinate system. How-
ever, when reading an unkown object from disk, solely the
information on its numerical representation is insufficient to
know what kind of vector it might be. We need some meta-
data, additional information about the data itself, that tells
what properties the object on disk has.

Within a C++ program, this meta-information is available
via the typeid function of a type. For instance, it allows to
distinguish between a FixedArray<3,double> and a Vec-

tor<3,double>, because typeid(FixedArray<3,double>)

!= Vector<3,double>, even though the memory layout of
both types is exactly the same. However, the function value
of typeid cannot be stored to disk – it is a compiler-internal

property that makes only sense at runtime for this specific
compiler.

We therefore need to assign certain properties to a type that
are associated with its algebraic properties. These proper-
ties must not be stored with the vector type itself for per-
formance reasons. They could be stored within a class as
enums, typedefs or static member functions, thereby not re-
quiring memory for the actual numerical type. An alterna-
tive technique is to associate information to a type via C++
type trait templates. This technique, common in C++ tem-
plate meta-programming [21], allows to specify information
about a type independently from this type, thereby achiev-
ing some encapsulation between the original type and the
meta-information about it. Type traits are templates that
are specialized for known types and provide information on
these types without the need to modify the type itself. They
can be applied to native types as well as user-defined types,
and including to types that are defined externally, for ex-
ample by a library. They can be added independently to an
existing type. An example of a type trait definition is given
in the following code excerpt:

template <class Type> struct MetaInfo;

template <>
struct MetaInfo<double>
{ enum { SIZE = 1 } };

template <int N>
struct MetaInfo<FixedArray<N, double> >
{ enum { SIZE = N } };

The type trait MetaInfo associates an integer value SIZE

with an arbitrary type Type. This information is available
at compile-time, and can be reduced to an usual integer in
a template class at any time, such as in:

template <class Type>
int NumberOfElements(const Type&T)
{

return MetaInfo<T>::SIZE;
}

Note that a type trait class may also specify default values
(by specifying a non-specialized definition) and can be func-
tions on template types itself (as demonstrated in the sec-
ond specialization). This mechanism allows to equip exist-
ing types, e.g. as provided by external libraries, with meta-
information as required for our framework.

The objective is to specify complete meta-information about
a “vector space element” as required to uniquely identify it.
As introduced in section 2, such information includes a refer-
ence to the metric (or metric field) and the orientation form
ι, to know perform the correct algebraic operations. This in-
formation can be provided via a “coordinate system”, which
can be a global type definition – not more than providing
the implicit knowledge on how to perform these operations,
such as in Euclidean space. In such a case, no memory or
computational resources are implied, but another type def-
inition could require explicit formulae for expressions that

are implicit in Euclidean space. Such a chart object may be
expressed via a convention on how the coordinate functions
are named, for instance {x, y, z} for Cartesian coordinates
versus {r, ϑ, ϕ} for polar coordinates. While this is yet work
in progress, the following quantities have been found to be
required for at least basic distinction and identification of
vector types:

I multiplicity : an integer value expressing the number of
components of this type.

II rank : the power k = a+ b of the vector space in terms
of the tangential space T a(M)× (T ∗)b(M); it is the di-
mensionality of the index space when considering the
vector type as an array: zero indicates a scalar type,
one is a one-dimensional vectorial type (tangential vec-
tor, co-vector, pseudo-vector, pseudo-covector), two are
objects representable as matrix, etc.

III grade: for quantities from geometric algebra, specifies
the grade k of the k-vector; the default is zero, for in-
stance for symmetric tensor fields. For example, a bi-
vector in 3D will have a grade of 2 whereas its rank is
1.

IV dimensions: the dimensionality n of the n-dimensional
manifold on which this vector type is attached.

V coordinatename(i): textual functions specifying the
naming convention for each of the n coordinate func-
tions.

VI covariance(i): for each index, a flag specifying whether
the index is an upper index or lower index. It can be
implemented via some function that returns true or false
for each index; this function may be evaluated fully at
compile-time (a template function that is known) or via
lookup into some static array.

VII symmetries(n): often, tensors have symmetric or anti-
symmetric index pairs. For efficiency reasons it is then
important to calculate and store only a minimum subset
of the components. This can be implemented via two
lookup tables: one table lists those components which
are actually stored, the other table contains the pre-
scription for obtaining each tensor component. In a
simple scheme, each tensor component is either stored,
or is the negative of a stored component, or is zero. (See
tables 1 and 2 for examples.) More complex schemes
also allow cyclic symmetries, where tensor components
can be linear combinations of stored components.

VIII coordinate systems(i): tensor components are only de-
fined with respect to a particular coordinate system. It
is necessary to store (for each index) the name of the
associated coordinate system. There are objects, such
as basis systems or operators that transform between
different coordinate systems, where different tensor in-
dices correspond to different coordinate systems.

These properties have been chosen such that some opera-
tions on the given types can also succeed with partial knowl-
edge, since certain algorithms do not require full knowledge
of the entire algebraic operations of all types.

List of stored components mapping the component name to
each storage index:

[0] [1] [2] [3] [4] [5]
gxx gxy gxz gyy gyz gzz

Obtaining tensor components from stored components via
prescription for each entry:

gxx gxy gxz gyx gyy gyz gzx gzy gzz
+[0] +[1] +[2] +[1] +[3] +[4] +[2] +[4] +[5]

Table 1: Storing a symmetric 3×3 tensor: The com-
ponent table works like a pointer to the stored com-
ponents.

List of stored components, mapping the component name to
each storage index:

[0] [1] [2]
Bxy Bxz Byz

Obtaining tensor components from stored components via
prescription for each entry:

Bxx Bxy Bxz Byx Byy Byz Bzx Bzy Bzz
0 +[0] +[1] −[0] 0 +[2] −[1] −[2] 0

Table 2: Storing an antisymmetric 3× 3 tensor: The
component table defines also signs during derefer-
encing, or in general, a polynomial expression of
components.

This list of “vector properties” is not claimed to be complete;
it is an early attempt to find a comprehensive scheme to
cover all geometric and algebraic quantities that occur when
performing numerical computations on manifolds. Special
attention must also be given to the case of non-tensorial
quantities such as Christoffel symbols, which do not yet fit
into this ontology.

The Cactus framework [11, 3] currently uses a scheme that
is simpler than the above; it is based on tensor algebra only
and does not support grades. However, it does offer sup-
port for tensor densities (by associating a weight with each
quantity), and it handles also certain special non-tensorial
objects, such as logarithms of scalar densities and Christof-
fel symbols. These special cases are handled as exceptions;
there is no generic scheme for them. This scheme is mostly
used for symmetry conditions, which require either reflect-
ing (mirroring) or rotating tensors. These operations require
only the symmetry information above.

What is left is a sufficiently powerful I/O layer that allows
to store and retrieve this meta-information persistently on
disk, such that a set of pure numbers can be identified for
their algebraic properties.

5.2 Storing Vector Types in HDF5
HDF5[19] is a generic scientific data format with support-
ing software, primarily an API provided in C. An HDF5

file can be viewed as a container, in which data objects are
organized in ways that are meaningful and convenient to
an application. HDF5 can be seen as a framework, rather
than a specific format itself, allowing adaption to the vari-
ous needs of diverse scientific domains [10]. The basic HDF5
object model is relatively simple, yet extremely versatile in
terms of the types of data that it can store. The model con-
tains two primary objects: groups, and datasets. Groups
provide the organizing structures, and datasets are the ba-
sic storage structures. HDF5 groups and datasets may also
have associated attributes, which are small data objects for
storing metadata defined by applications.

HDF5 allows the specification of user-defined types that
shall be stored in a file via its H5T API [20]. For instance,
a struct in C/C++ of the form

struct CartesianVector
{

double x,y,z;
};

can be expressed in the H5T API as compound type:

hid_t id = H5Tcreate(H5T_COMPOUND,
sizeof(CartesianVector));

H5Tinsert(id, "x", 0, H5T_DOUBLE);
H5Tinsert(id, "y", sizeof(double), H5T_DOUBLE);
H5Tinsert(id, "z", 2*sizeof(double), H5T_DOUBLE);

This code fragment creates an HDF5 identifier id that repre-
sents a type of the memory layout as in the aforementioned
structure definition. This functionality provides an imple-
mentation of the component storage indices as used in table
1 and 2. More details can be found in the HDF5 reference
manual.

When writing or reading a dataset to disk, the HDF5 API
requires a type identifier to be specified with a void*. This
tells the HDF5 library how to interpret some chunk of mem-
ory. Various generic tools exist to investigate the contents
of an HDF5 file, which has a structure of a file system it-
self. “Datasets” play the role of a file, “Groups” the role
of a directory. The tool h5ls – part of the HDF5 dis-
tribution – lists the contents of an HDF5 file in the fash-
ion of the Unix tool ls, enhanced with additional informa-
tion about the type of a dataset. The following example
shows how a three-dimensional dataset CartesianVector

data[5][13][9]; appears in this file listing (shortened as
compared with actual output):

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes
Type: struct {

"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:
(0,0,0) {0.210951, -0.0406732, 0.0611351},

{0.210204, -0.0443333, 0.0611199},
{0.209324, -0.0483009, 0.0611070},
{0.208286, -0.0525892, 0.0610958},

(0,0,4) {0.207065, -0.0571980, 0.0610863},
{0.205640, -0.0621138, 0.0610815},

By virtue of HDF5, we can easily attach names to the purely
numerical values in the data field. Hereby the HDF5 library
offers various features that are very useful in practice, such
as not only taking care of conversions between big-endian
and little-endian platforms, but also conversions from double
to float component types as well as transformations between
different layouts such as {x, y, z} ⇔ {z, x, y}.

The availability of a naming scheme attached to numerical
values is already sufficient to identify a coordinate system
that is supposed to be “attached” to these numbers, in spirit
of 5.1, V. Knowing the coordinate system relative to which
the numbers are stored, in addition we need to specify the
various attributes defining the algebraic properties of this
vector type HDF5 allows to attach attributes with a dataset,
group or “named data type”. A named data type is a type id
that was created by the H5Tcreate() call but saved to disk.
It needs to be associated with a group in the file. Attributes
attached to such a named data type are shared among all
data sets of this type – the data type acts like a pointer to
a common location of a set of attributes. We now need to
define an HDF5 type for each of the vector types as defined
from the meta-information about a specific data type. The
following HDF5 listing shows the created named type, stored
in a group /Charts/Cartesian3D, as it is named“Point”and
equipped with an integer telling this data type refers to a
manifold of dimension three. This data type “Point” is then
later used to declare a dataset of points (shown with two
attributes denoting the name of the associated chart and
the dimension of the related manifold):

/Charts/Cartesian3D/Point Type
Attribute: ChartDomain scalar

Type: null-terminated ASCII string
Data: "Cartesian3D"

Attribute: Dimensions scalar
Type: native int
Data: 3

Type: shared-1:13328 struct {
"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes
Type: { shared-1:13328} struct {

"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:

This scheme allows to identify the dataset named “Blocks”
as representing Cartesian coordinates of point locations. Ac-
cessing the dataset “Blocks” during reading, the software

application can easily check for the attributes of the dataset
to retrieve its algebraic properties. However, doing so is
optional. Many applications might not implement the full
set of tensor algebra, but might still provide a set of use-
ful operations – such as displaying a dataset numerical as a
spreadsheet etc. The information that the dataset consists of
three floating point numbers, the only information required
for a generic operation such as displaying as spreadsheet,
is immediately available, more complex properties require
further lookup.

This naming scheme is work in progress and not yet imple-
mented or available in its full generality. Various questions
have yet to be addressed, such as a generic naming scheme
for types or the specification of multivectors. For the lat-
ter, one might utilize the HDF5 feature that a compound
type may contain other compound types as well. If such
is the appropriate solution here, will be subject of further
investigation.

5.3 Storing Multi-Vector Types in HDF5
Multivectors are linear combinations of vectors of differ-
ent basis elements, thereby forming an higher-dimensional
space. A similar functionality is achieved using HDF5 by
creating compound types from the basic vector types. For
instance, given a bivector type in 3D, created by HDF5 API
calls of the form

hid_t bivector3D_id =
H5Tcreate(H5T_COMPOUND, 3*sizeof(double));

H5Tinsert(bivector3D_id, "yz", 0, H5T_NATIVE_DOUBLE);
H5Tinsert(bivector3D_id, "zx", 8, H5T_NATIVE_DOUBLE);
H5Tinsert(bivector3D_id, "xy", 16, H5T_NATIVE_DOUBLE);

we may create a rotor in the following as compound contain-
ing the bivector, and adding a scalar:

hid_t rotor3D_id = H5Tcreate(H5T_COMPOUND, 32);

H5Tinsert(rotor3D_id, "cos", 0, H5T_NATIVE_DOUBLE);
H5Tinsert(rotor3D_id, "sin", 8, bivector3D_id);

We name the scalar and bivector component “cos” and “sin”
here, inspired by the construction of a rotor. What naming
scheme to use here in general, will yet need to be explored. It
is now a nice feature of HDF5 that different storage schemes
are automatically mapped, i.e. datasets stored as the fol-
lowing type

hid_t antirotor3D_id =
H5Tcreate(H5T_COMPOUND, 4*sizeof(double));
H5Tinsert(antirotor3D_id, "sin", 0 , bivector3D_id);
H5Tinsert(antirotor3D_id, "cos", 24, H5T_NATIVE_DOUBLE);

can be directly read without further specific treatment as
a rotor3D_id dataset. This way HDF5 easily provides the
notion of a+ c∧ b ≡ c∧ b+ a, i.e., commutativity of the “+”
operator. One can also define a type which only retrieves
the bivector component of a dataset of rotors, or the scalar
component. This functionality is already provided by HDF5.

The specification of maps on multivectors, section 2.8, ap-
pears non-trivial, due to the many symmetry conditions that
occur in these cases. For instance, if the Riemann tensor as
in 3.3 would be stored by each of its tensor components, this
results in 256 values (at each point). However, only 20 need
to be stored, and under certain conditions (such as matter-
free spacetime) that may be known in advance, only 10 .
A smart type definition system that is able to express such
properties yet has to be developed. Symmetry tables such
as discussed in 5.1 might be a way to go, and a formulation
of those as attributes on HDF5 types will be developed.

6. CONCLUSION
In this article we have reviewed the various types of what is
usually called a “vector” in the context of differential geom-
etry and geometric algebra. Various algebraic types have
been identified, which are all represented numerically by
three floating point numbers in three dimensions: tangen-
tial vectors, co-vectors, bi-vectors and bi-co-vectors. Yet
these four different types have distinct algebraic properties
and should be distinguished. We demonstrated the appli-
cation of diverse vector types in four dimensions, leading to
an easier formulation of the Newmann-Penrose formalism by
virtue of Geometric Algebra. The clarity of the diverse alge-
braic types as achieved via GA thereby eases “navigation” in
Riemann space, computer graphic applications (where two
examples are given), and identification of quantities stored
in files.

7. REFERENCES
[1] LIGO: Laser Interferometer Gravitational Wave

Observatory, URL http://www.ligo.caltech.edu/.

[2] GRwiki: a repository of basic definitions and formulas
for gravitational physics, URL
http://grwiki.physics.ncsu.edu/.

[3] Cactus Computational Toolkit home page, URL
http://www.cactuscode.org/.

[4] Binary pulsar. Wikipedia, 2009. URL
http://en.wikipedia.org/wiki/Binary_pulsar.

[5] Exterior algebra. Wikipedia, 2009. URL
http://en.wikipedia.org/wiki/Exterior_algebra.

[6] The Nobel Prize in physics 1993. Wikipedia, 2009.
URL http://nobelprize.org/nobel_prizes/

physics/laureates/1993/illpres/discovery.html.

[7] Quaternion. Wikipedia, 2009. URL
http://en.wikipedia.org/wiki/Quaternion.

[8] W. Benger, G. Ritter, and R. Heinzl. The Concepts of
VISH. In 4th High-End Visualization Workshop,
Obergurgl, Tyrol, Austria, June 18-21, 2007, pages
26–39. Berlin, Lehmanns Media-LOB.de, 2007.

[9] A. Bossavit. Differential geometry for the student of
numerical methods in electromagnetism. Technical
report, Tampere University of Technology, 1991. URL
http://butler.cc.tut.fi/~bossavit/.

[10] M. T. Dougherty, M. J. Folk, E. Zadok, H. J.
Bernstein, F. C. Bernstein, K. W. Eliceiri, W. Benger,
and C. Best. Unifying biological image formats with
hdf5. Communications of the ACM (CACM),
52(10):42–47, October 2009.

[11] T. Goodale, G. Allen, G. Lanfermann, J. Massó,
T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In

http://www.ligo.caltech.edu/
http://grwiki.physics.ncsu.edu/
http://www.cactuscode.org/
http://en.wikipedia.org/wiki/Binary_pulsar
http://en.wikipedia.org/wiki/Exterior_algebra
http://nobelprize.org/nobel_prizes/ physics/laureates/1993/illpres/discovery.html
http://nobelprize.org/nobel_prizes/ physics/laureates/1993/illpres/discovery.html
http://en.wikipedia.org/wiki/Quaternion
http://butler.cc.tut.fi/~bossavit/

Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[12] A. J. S. Hamilton and P. P. Avelino. The physics of
the relativistic counter-streaming instability that
drives mass inflation inside black holes. Physics
Reports, accepted, 2009. gr-qc/0811.1926.

[13] A. Held. A formalism for the investigation of
algebraically special metrics. i. Commun. Math. Phys.,
37:311–26, 1974.

[14] D. Hestenes. New Foundations for Classical
Mechanics, 2nd ed. Springer Verlag., 1999.

[15] D. Hestenes. Oersted medal lecture 2002: Reforming
the mathematical language of physics. American
Journal of Physics, 71(2):104–121, 2003. URL
http://link.aip.org/link/?AJP/71/104/1.

[16] E. T. Newman and R. Penrose. An approach to
gravitational radiation by a method of spin
coefficients. J. Math. Phys., 3:566–79, 1962.

[17] E. Poisson and W. Israel. Inner-horizon instability and
mass inflation in black holes. Phys. Rev.,
D41:1796–1809, 1990.

[18] E. (Ted) Newman and R. Penrose. Spin-coefficient
formalism. Scholarpedia, 4(6):7445, 2009. URL
http://www.scholarpedia.org/article/

Newman-Penrose_formalism.

[19] The HDF Group. Hierarchical data format version 5.
http://www.hdfgroup.org/HDF5, 2000-2009.

[20] The HDF Group. HDF5 H5T API, 2009. URL http:

//www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html.

[21] T. Veldhuizen. Using C++ template metaprograms.
C++ Report, 7(4):36–43, May 1995. Reprinted in
C++ Gems, ed. Stanley Lippman.

http://link.aip.org/link/?AJP/71/104/1
http://www.scholarpedia.org/article/Newman-Penrose_formalism
http://www.scholarpedia.org/article/Newman-Penrose_formalism
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html

	Introduction
	Vector Spaces
	Tangential Vectors
	Co-Vectors
	Tensors
	Exterior Product
	Visualizing Exterior Products
	Geometric Algebra
	Spinors and Quaternions
	Multilinear Multivector Maps

	Newman-Penrose formalism
	Newman-Penrose tetrad
	Reflections
	Rotations
	Boosts

	Electromagnetic waves
	Gravitational waves

	Implementing Vectors in C++
	Class Hierarchy
	Camera Navigation using GA
	Relativistic observers in the BHFS
	The BHFS
	Lorentz rotors in the BHFS
	Simplicity of Lorentz rotors

	Vectors on the Hard Disk
	Meta-Data on Vector Types
	Storing Vector Types in HDF5
	Storing Multi-Vector Types in HDF5

	Conclusion
	References

