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ON SAFARI IN THE FILE FORMAT  
JUNGLE—WHY CAN’T YOU VISUALIZE  
MY DATA?
By Werner Benger

A typical visualization request 
goes something like this:

“Here, I have some data for you 
to visualize. The data format is 
very simple—it’s just ASCII—so 
you can easily read it. And, there’s 
plenty of time left: I don’t need it 
until my presentation next week.” 

To the utmost disappointment of the 
interested party, this approach usually 
doesn’t work.

The apparent expectation is that 
visualization is something like using 
a Web browser: here’s the URL, just 
click on it and out pops a pretty image. 
Reality, however, differs markedly from 
this vision. When people see a good vi-
sualization or movie of some data, they 
typically have no idea about the effort 
behind it. For example, I once showed 
a scientist a 30-second animation of  
his data, and he asked how long it took 
to create it. I said it was pretty quick—
only three weeks. He was totally puz-
zled by that answer, and expressed his 
astonishment: “For 30 seconds? Why 
did it take you so long?”

At the time, I was unprepared for 
this reaction and somewhat at a loss for 
words. Fortunately, in the meantime, 
I’ve heard rumors that at Industrial 
Light & Magic, a team of several hun-
dred people worked for three months 

to create a three-second sequence for 
a “Star Wars” movie. So, now I have 
a better reply in similar situations:  
I point out that I’m still orders of mag-
nitude faster than the George Lucas 
team. Of course, my result is not yet a 
Hollywood blockbuster.

Figures 1 and 2 show examples of 
visualizations I created from “easy to 
read” data, including the famous “just 
ASCII” format. These images have be-
come quite popular, but the amount of 
work involved in preparing the data for 
the !nal visualization process—which 
takes only a fraction of a second—is 
far from obvious in the !nal results.

Getting Stuck in the File  
Format Swamp
So, what’s the main hurdle that slows 
the process of “just visualizing” some 
data? First and foremost, there’s the 
issue of !le format and reading the 
data. Actually, this allegedly simple is-
sue might well consume 90 percent or 
more of the data visualization time. In 
some cases, it’s taken us several months  
to become able to read a particular data 
set. Only then could we !nally press 
the “visualize and go” button. 

“Just ASCII”
The “just ASCII” data approach isn’t as 
simple as it appears to the data provid-
er, who often assumes that a “human 
readable” !le is also easily readable by a 

computer program. However, writing 
data is much easier than reading it.

Reading ASCII data requires some 
parsing routines, which are quite sen-
sitive to minor changes in the input 
format. In one case, we’d !nally imple-
mented some data-reading routines, and 
then discovered that some newly provid-
ed data was unreadable. It took us quite 
some time to discover that the new data 
simply had one additional empty line in 
its format. Clearly, this was a triviality 
for the data provider, who didn’t even 
think to tell us about the change. How-
ever, it was a big deal for the reading rou-
tines, which stumbled across this change 
in the most inconvenient moment.

It’s mostly those simple things that, 
added together, are extremely time 
consuming when dealing with “just 
ASCII.” Besides, parsing ASCII text 
data is extremely slow and requires 
lots of disk space. So what’s the alter-
native? Just use binary data formats.

“Just Binary”
Because a binary !le by itself is simply 
an agglomeration of bits and bytes, 
it’s incomplete without an appropriate 
description of how to read it. So, the 
actual !le format consists of two !les: 
the raw data !le and an email describ-
ing how to read it from the human 
who created it. The creator might also 
provide this information—the “meta-
data” describing the data—by other 

Lots of glossy images and striking movies on the one side, lots of numbers and full hard disks on the other—
seems like a natural pair. So why can’t visualization people “just visualize” some data? 
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means, such as a document or some 
source code. 

In general, reading binary data is 
easier than reading ASCII because 
there’s no parsing step. There’s also 
less "exibility in the !le variations: 
either the reading works or it fails—
more or less—completely (but at least 
there’s no !ddling with arbitrarily in-
troduced empty lines). However, you 

might still have to deal repeatedly 
with supposedly solved problems, such 
as byte orderings (little-endian vs.  
big-endian) or different data types 
(int/"oat/double). Also, operating on 
“just binary” data is low level and 
requires the tedious reproduction of 
work that various I/O libraries already 
do for some established !le formats.

Established File Formats
Many different !le formats exist for data 
to be used for scienti!c visualization. 
These formats come with more or less 
adequate libraries and APIs, giving de-
velopers the opportunity to select their 
favorites. As it turns out, this freedom 
of choice is also exactly the problem: as 
of now, there’s no generally accepted or 
standardized format that can deal with 
all cases. So, one speci!c data type can 
be written in multiple ways.

Typically, the !le format is based on 
what the application developer plans 
to do with the data after processing it, 
such as targeting visualization using a 
speci!c software tool. For this speci!c 
scenario, visualizing the data is indeed 

close to a click-and-go solution. How-
ever, for software that doesn’t under-
stand this particular !le format—but 
might provide some essential visualiza-
tion feature—this format counts as “just 
binary,” and making it cognizant of the 
actual format might require a fairly sig-
ni!cant implementation effort. 

If the chosen format is accompanied 
by a software library and API, you’re 
in luck. But many times, you have to 
construct it from scratch, based on 
some PDF documentation or an email 
description. And, even with a software 
API, it might require a major program-
ming effort as the library might be avail-
able only in Java or Fortran, whereas the 
target visualization software is written 
in C++ or C (or vice versa). Yet, even if 
the API is available in C/C++, it might 
be so complex to use that supporting it 
would be considerably time consuming. 

The File Format Gap
Application developers who write 
scienti!c simulation software often 
choose to output data in their own, 
self-invented format instead of using 
an existing format. In so doing, they 
avoid an API’s steep learning curve 
and can concentrate on solving physics 
problems rather than spending time 
on software engineering issues. Like-
wise, visualization software developers 
probably prefer to spend time develop-
ing visualization algorithms instead of 
supporting dozens of different !le for-
mats. After all, in an academic research 
environment, no one gets papers writ-
ten for supporting another !le format! 
The physicist writes papers for solving 
problems in physics, and the visualiza-
tion researcher writes papers for new 
visualization algorithms—not for new 
!le format support.

Nevertheless, understanding each 
other’s data is a necessity, and bridging 
the gap between research interests and 

Figure 1. The outspiralling gravitational 
!eld resulting from the collision of two 
merging black holes, visualized as a 3D 
colored volume. I received the data on 
which this visualization is based in “just 
ASCII” format—a sequence of complex 
coef!cients for spherical harmonic 
base functions. Preparing for this 
visualization required about 18 months 
of implementation effort.

Figure 2. Gravitational waves from colliding black holes, with the apparent horizons 
of the merging black holes in the center. I received the apparent horizons as a table 
of multipole coef!cients in “just ASCII” format—simple to read, yet the surfaces’ 
3D reconstruction required an implementation effort of about six months.
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practical needs is an unavoidable re-
quirement. To do this, both sides must 
realize that no one is enthusiastically 
interested in devoting time, effort, and 
resources toward supporting another 
!le format. Application scientists often 
expect the visualization side to do all 
the data reading efforts and frequently 
state that, “I won’t use your visual-
ization application if it can’t read my 
data.” A valid and reasonable statement 
at the !rst sight, but again, the Web 
browser comparison comes to mind: 
visualization of datasets is expected 
to be as easy as browsing a website. 
This analogy does apply, but with an 
essential difference: Web site creators 
provide images in a format that the 
Web browser understands, be it JPEG 
or GIF or PNG. Web content creators 
wouldn’t expect a Web browser to  
support their own homegrown !le  

formats and wouldn’t refuse to exam-
ine their own data until such support 
was offered by the browser developer.

In the scienti!c visualization con-
text, the application scientist is some-
what in the content creator’s position, 
while the visualization person is in the 
position of writing the “data browser.” 
The main difference is that well- 
established standards exist for images, 
but not for 3D data or for complex 
meshes or even for such simple cases 
as scalar !elds on uniform grids. Actu-
ally, this context offers a particularly 
absurd situation: more complex data 
sets might have fewer !le format issues 
because, for complex data types, only 
one !le format might exist. In contrast, 

for a simple data type, there might be 
many competing format options.

Clearing a Path to a  
Common Data Model
Overcoming the gap between ap-
plication scientists and visualization  
developers when it comes to !le formats 
requires mutual investment from both 
sides. In a fruitful cooperation, appli-
cation scientists provide the appropri-
ate knowledge and human resources 
to make their data “readable.” In a less 
fruitful collaboration, they provide 
data !les with improper documenta-
tion on how to read them or reading 
routines that are speci!c to a software 
environment and not applicable to the 
visualization environment (such as us-
ing commercial libraries or complex 
functionality not available to the visu-
alization). Surprisingly, the application 

scientists often don’t even know their 
own data formats. They treat their 
simulation tools as black boxes: some 
else has written the code, so they can’t 
answer questions about how to read 
the data !les that they themselves pro-
vide. And, as mentioned earlier, self-
invented !le formats frequently entail 
silently introduced and highly frus-
trating changes that aren’t announced 
to the visualization side. Such issues 
would be another reason to use estab-
lished !le formats for communicating 
data—if such formats existed.

Bridging the File Format Gap
A big hurdle for establishing a stan-
dard !le format for scienti!c data is 

the incompatibility of data structures 
themselves. Not all !le formats can 
cover all data types that occur in sci-
enti!c simulations and visualization. 
A standard !le format that enables 
true interoperability across indepen-
dently developed applications would 
need to cover all different cases within 
the same model. At this point, philo-
sophical beliefs come into play: many 
people simply don’t think this is pos-
sible at all. Rather, the mainstream ap-
proach appears to be “special problems 
need special solutions,” which results 
in myriad specialized !le formats and 
a list of special cases to be handled by 
some visualization application. Such 
beliefs are hard to overcome. 

Many application developers focus 
on only their own application (which, 
of course, produces the papers) and 
seldom see things in a larger context. 
Nevertheless, there are a few attempts 
at establishing a common data model. 
One of the !rst common data model 
proponents was David Butler, who 
said, “a common language for the in-
terchange of scienti!c data exists—this 
is the language of mathematics, which 
is common to all simulations—we just 
have to use it.”1 He then proposed to 
model data using mathematical con-
cepts based on the theory of !ber 
bundles. These ideas have been suc-
cessfully implemented in the IBM 
Data Explorer, which is available as the 
OpenDX open source tool.2 OpenDX 
comes with its own !le format, which 
is powerful enough to cover a wide 
range of data types. 

OpenDX users are generally quite 
pleased with its "exibility. However, 
it’s also complicated to use and its de-
velopment has become dormant. So, 
despite a powerful internal data model, 
OpenDX doesn’t provide state-of-the-
art rendering and visualization tech-
niques. On the other hand, the !ber 

Self-invented !le formats frequently entail highly 

frustrating changes that aren’t announced to the 

visualization side.

CISE-11-6-visu.indd   4 10/1/09   2:40:43 PM



NOVEMBER/DECEMBER 2009 5

bundle data model—which can pro-
vide generic algorithms3—is mostly 
unknown to modern visualization 
software tools, which usually provide 
highly specialized visualization algo-
rithms for speci!c data structures. The 
OpenDX !le format in its generality 
isn’t supported elsewhere. This means 
that support for a speci!c visualization 
application’s speci!c !le format is done 
on a tedious, case-by-case basis.

HDF5
Managed by the nonpro!t HDF group, 
HDF5 (www.hdfgroup.org/HDF5)  
is a promising !le format that  
was originally developed at the Na-
tional Center for Supercomputing 
Applications. 

HDF5:

provides many unique features,
was designed for high performance, 
has a large user community,
is in active development with long-
term support plans,
comes with a well-documented API, 
and, most importantly,
provides a self-describing !le format.

HDF5 is receiving increasing sup-
port from many applications. Data 
provided in HDF5 format solves the 
big problem of how to read data. Us-
ing the HDF5 tools, developers can 
easily determine the !les’ contents. 
The HDF5 library API provides neat, 
well-documented routines to perform 
these operations.

However, providing data in HDF5 
doesn’t solve the problem of being 
able to retrieve the data completely. 
It only shifts this problem to a higher 
level, from the syntax (how to read 
the data) to the semantics (how to in-
terpret the data). That is, being able 
to read and interpret one HDF5 !le 
doesn’t mean you can interpret other 

arbitrary HDF5 !les as well; it’s not a 
data model per se, but rather a multi-
dimensional arrays container (that also 
provides other highly useful features). 

HDF5 is best compared to a con-
tainer !le format, such as an AVI 
movie !le, which acts as an envelope 
for movies. But how the movie’s image 
frames are actually stored depends on 
the video codec that’s used. If such a 
codec isn’t available when reading the 
AVI !le, it’s unreadable, even though 
it’s an AVI !le. The same is true 
with HDF5: the !le format is "exible 
enough that you can write a speci!c 
data type in many different layouts. 
However, if the writing application 
and the reading application don’t 
agree on how to lay out the data, the 
data are still unreadable, even though 
they’re stored in HDF5 format.

The simpler a data type is, the 
more possibilities exist for different 
layouts. For example, for a 3D sca-
lar !eld on a uniform grid, it might 
sound straightforward simply to store 
it as a 3D dataset in HDF5. However, 
a dif!culty arises with the associated 
metadata, such as coordinate informa-
tion, or the physical time associated 
with a time series. You can store such 
information via attributes, but doing 
so requires agreement on the attri-
bute names. Introducing conventions 
is always a bottleneck in achieving 
interoperability. As it turns out, the 
fewer the required conventions, the 
less error-prone the implementations 
will be. Ideally, a !le format should be 
keyword free—that is, all its semantic 
information should be contained in a 
logical layout that leads everyone in 
the same direction, without need for 
negotiating naming schemes for key-
words and their meanings. Indeed, I 
remember weeklong discussions with 
colleagues on whether some attri-
bute should be called “Size” or “size”;  

everyone had a strong preference for 
one or the other. Unfortunately, such 
decisions, which are based simply on 
matters of taste, can make !les un-
readable if the outcomes don’t agree 
or they change over time. Therefore, 
it’s best to avoid naming conventions 
entirely if possible. I tackled this chal-
lenge with !ber bundle HDF5 (F5; see 
www.!berbundle.net), which I’ve been 
developing for my own visualization 
environment.

The F5 File Format
F5 arose out of the need to support 
many different data types and their 
properties in the numerical relativity 
context. Many quantities that are im-
plicit in Euclidian geometry—such as 
coordinate systems and metric tensor 
!elds—are handled explicitly in general 
relativity. Given this, a !le format that 
can support this general case is likely to 
also support many other cases. 

Six-Level Hierarchy
Inspired by Butler’s initial (but ab-
stract) considerations on using !ber 
bundles to model data and its success-
ful implementation in OpenDX, F5 
uses HDF5 to lay out data in a hier-
archical structure with six levels, each 
with a speci!c semantic meaning:

Time slice1. 
Grid name2. 
Topological skeleton3. 
Coordinate system4. 
Field name5. 
Field fragment (optional)6. 

Only the !fth level and above con-
tain actual data sets. Rather than using 
keywords, the metadata information 
is expressed by the placement of en-
tries in the hierarchy. The topmost 
level de!nes a time series. The second 
level contains an arbitrary, user-chosen 
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name for the “Grid” geometric entity. 
The third level provides entries for the 
Grid’s topological properties, such as its 
vertices, cells, or edges. The coordinate 
system level refers to data given in Car-
tesian coordinates, polar coordinates, 
and so on. The !fth level is for !elds 
and consists of multi dimensional data 
sets. In the sixth, optional level, these 
data sets can be fragmented into small-
er parts, which are useful, for example, 
to handle output from a parallelized 
simulation code where each compute 
node deals only with a !eld subset for 
the global computational domain.

The data layout is largely keyword 
independent because the entry names 
are irrelevant. The only agreement is 
to store data on a six-level hierarchy 
and associate semantics with each 
level. In practice, the layout isn’t com-
pletely keyword free, however, because 
a minimal attributes set still must be 
attached to some objects. Neverthe-
less, the intent is to keep the set of such 
“reserved words” as small as possible. 
We can therefore view the F5 model 
as an (intentionally) keyword-free  
version of the OpenDX model that 
groups “compatible” arrays together. 

API Complexity
A major reason why previous attempts at 
establishing a common data model have 
failed is that their APIs exposed the data 
model’s full complexity. Clearly, if you 
need to store only one simple data type, 
you’d prefer to avoid the considerable 
overhead that accompanies the entire 
generality of a common data model. 

A complex, powerful, generic API is 
more intimidating than encouraging. 
The F5 model therefore comes with 
a library that is built upon HDF5 and 
provides a lightweight API for writing 
common data types in a simple way, such 
as with a single API call. Still, the API 
allows access to the deeper functions, 

so, for more complex—and currently  
unsupported—data types, you can direct-
ly use the underlying HDF5 functions 
to write the data in a layout compatible 
with the !ber bundle concept.

Supporting only this F5 format in 
the visualization application is much 
easier than supporting a dozen !le 
formats. You therefore have to convert 
speci!c !le formats into the F5 format 
before you can visualize it. You can do 
this in collaboration with the data de-
veloper; the HDF5 library itself is well 
documented and the F5 library simple 
enough that other people can quickly 
learn how to use it (in contrast to a 
complex visualization application).

Adding new !le format support to a 
visualization application isn’t as simple 
as writing “a reader”—that concept ac-
tually works only for simple cases where 
you can keep the entire data set in mem-
ory. Nowadays, however, with datasets 
much larger than the RAM available on 
local workstations or even visualization 
clusters, reading all the data at once isn’t 
really an option. The objective instead 
is to read only those data that a speci!c 
visualization operation requires. For 
example, a data subset or the metadata 
alone are often suf!cient, such as when 
you’re displaying the bounding box of 
some geometry. HDF5 provides a clear 
separation of data and metadata, and 
provides mechanisms to retrieve only 
subsets for data arrays (hyperslabs). A 
visualization application that uses such 
features couldn’t easily support another 
!le format that doesn’t provide similar 
functionality.

To visualize someone’s data, you 
must !rst be able to read them. 

As with many things, such an alleg-
edly simple task can evolve into a ma-
jor time-consuming effort. Overnight 
“just do it” approaches are typically 

unrealistic and lead to mutual frustra-
tion. A successful visualization proj-
ect requires investment from both 
parties—the data provider and the 
visualizer—and keeps in mind every-
one’s research priorities. No one wants 
to invest the time needed to imple-
ment !le converters at the expense of 
research hours.

Reading data entails practical chal-
lenges, and the F5 format is an attempt 
to tackle them. Although F5 doesn’t 
claim to be the ultimate solution, my 
hope is that its spirit and design phi-
losophy will !nd support in similar 
attempts.   
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