
2 Copublished by the IEEE CS and the AIP 1521-9615/09/$26.00 © 2009 IEEE COMPUTING IN SCIENCE & ENGINEERING

V I S U A L I Z A T I O N C O R N E R

Editors: Claudio T. Silva, csilva@cs.utah.edu
Joel E. Tohline, tohline@rouge.phys.lsu.edu

ON SAFARI IN THE FILE FORMAT
JUNGLE—WHY CAN’T YOU VISUALIZE
MY DATA?
By Werner Benger

A typical visualization request
goes something like this:

“Here, I have some data for you
to visualize. The data format is
very simple—it’s just ASCII—so
you can easily read it. And, there’s
plenty of time left: I don’t need it
until my presentation next week.”

To the utmost disappointment of the
interested party, this approach usually
doesn’t work.

The apparent expectation is that
visualization is something like using
a Web browser: here’s the URL, just
click on it and out pops a pretty image.
Reality, however, differs markedly from
this vision. When people see a good vi-
sualization or movie of some data, they
typically have no idea about the effort
behind it. For example, I once showed
a scientist a 30-second animation of
his data, and he asked how long it took
to create it. I said it was pretty quick—
only three weeks. He was totally puz-
zled by that answer, and expressed his
astonishment: “For 30 seconds? Why
did it take you so long?”

At the time, I was unprepared for
this reaction and somewhat at a loss for
words. Fortunately, in the meantime,
I’ve heard rumors that at Industrial
Light & Magic, a team of several hun-
dred people worked for three months

to create a three-second sequence for
a “Star Wars” movie. So, now I have
a better reply in similar situations:
I point out that I’m still orders of mag-
nitude faster than the George Lucas
team. Of course, my result is not yet a
Hollywood blockbuster.

Figures 1 and 2 show examples of
visualizations I created from “easy to
read” data, including the famous “just
ASCII” format. These images have be-
come quite popular, but the amount of
work involved in preparing the data for
the !nal visualization process—which
takes only a fraction of a second—is
far from obvious in the !nal results.

Getting Stuck in the File
Format Swamp
So, what’s the main hurdle that slows
the process of “just visualizing” some
data? First and foremost, there’s the
issue of !le format and reading the
data. Actually, this allegedly simple is-
sue might well consume 90 percent or
more of the data visualization time. In
some cases, it’s taken us several months
to become able to read a particular data
set. Only then could we !nally press
the “visualize and go” button.

“Just ASCII”
The “just ASCII” data approach isn’t as
simple as it appears to the data provid-
er, who often assumes that a “human
readable” !le is also easily readable by a

computer program. However, writing
data is much easier than reading it.

Reading ASCII data requires some
parsing routines, which are quite sen-
sitive to minor changes in the input
format. In one case, we’d !nally imple-
mented some data-reading routines, and
then discovered that some newly provid-
ed data was unreadable. It took us quite
some time to discover that the new data
simply had one additional empty line in
its format. Clearly, this was a triviality
for the data provider, who didn’t even
think to tell us about the change. How-
ever, it was a big deal for the reading rou-
tines, which stumbled across this change
in the most inconvenient moment.

It’s mostly those simple things that,
added together, are extremely time
consuming when dealing with “just
ASCII.” Besides, parsing ASCII text
data is extremely slow and requires
lots of disk space. So what’s the alter-
native? Just use binary data formats.

“Just Binary”
Because a binary !le by itself is simply
an agglomeration of bits and bytes,
it’s incomplete without an appropriate
description of how to read it. So, the
actual !le format consists of two !les:
the raw data !le and an email describ-
ing how to read it from the human
who created it. The creator might also
provide this information—the “meta-
data” describing the data—by other

Lots of glossy images and striking movies on the one side, lots of numbers and full hard disks on the other—
seems like a natural pair. So why can’t visualization people “just visualize” some data?

CISE-11-6-visu.indd 2 10/1/09 2:40:26 PM

NOVEMBER/DECEMBER 2009 3

means, such as a document or some
source code.

In general, reading binary data is
easier than reading ASCII because
there’s no parsing step. There’s also
less "exibility in the !le variations:
either the reading works or it fails—
more or less—completely (but at least
there’s no !ddling with arbitrarily in-
troduced empty lines). However, you

might still have to deal repeatedly
with supposedly solved problems, such
as byte orderings (little-endian vs.
big-endian) or different data types
(int/"oat/double). Also, operating on
“just binary” data is low level and
requires the tedious reproduction of
work that various I/O libraries already
do for some established !le formats.

Established File Formats
Many different !le formats exist for data
to be used for scienti!c visualization.
These formats come with more or less
adequate libraries and APIs, giving de-
velopers the opportunity to select their
favorites. As it turns out, this freedom
of choice is also exactly the problem: as
of now, there’s no generally accepted or
standardized format that can deal with
all cases. So, one speci!c data type can
be written in multiple ways.

Typically, the !le format is based on
what the application developer plans
to do with the data after processing it,
such as targeting visualization using a
speci!c software tool. For this speci!c
scenario, visualizing the data is indeed

close to a click-and-go solution. How-
ever, for software that doesn’t under-
stand this particular !le format—but
might provide some essential visualiza-
tion feature—this format counts as “just
binary,” and making it cognizant of the
actual format might require a fairly sig-
ni!cant implementation effort.

If the chosen format is accompanied
by a software library and API, you’re
in luck. But many times, you have to
construct it from scratch, based on
some PDF documentation or an email
description. And, even with a software
API, it might require a major program-
ming effort as the library might be avail-
able only in Java or Fortran, whereas the
target visualization software is written
in C++ or C (or vice versa). Yet, even if
the API is available in C/C++, it might
be so complex to use that supporting it
would be considerably time consuming.

The File Format Gap
Application developers who write
scienti!c simulation software often
choose to output data in their own,
self-invented format instead of using
an existing format. In so doing, they
avoid an API’s steep learning curve
and can concentrate on solving physics
problems rather than spending time
on software engineering issues. Like-
wise, visualization software developers
probably prefer to spend time develop-
ing visualization algorithms instead of
supporting dozens of different !le for-
mats. After all, in an academic research
environment, no one gets papers writ-
ten for supporting another !le format!
The physicist writes papers for solving
problems in physics, and the visualiza-
tion researcher writes papers for new
visualization algorithms—not for new
!le format support.

Nevertheless, understanding each
other’s data is a necessity, and bridging
the gap between research interests and

Figure 1. The outspiralling gravitational
!eld resulting from the collision of two
merging black holes, visualized as a 3D
colored volume. I received the data on
which this visualization is based in “just
ASCII” format—a sequence of complex
coef!cients for spherical harmonic
base functions. Preparing for this
visualization required about 18 months
of implementation effort.

Figure 2. Gravitational waves from colliding black holes, with the apparent horizons
of the merging black holes in the center. I received the apparent horizons as a table
of multipole coef!cients in “just ASCII” format—simple to read, yet the surfaces’
3D reconstruction required an implementation effort of about six months.

CISE-11-6-visu.indd 3 10/1/09 2:40:43 PM

V I S U A L I Z A T I O N C O R N E R

4 COMPUTING IN SCIENCE & ENGINEERING

practical needs is an unavoidable re-
quirement. To do this, both sides must
realize that no one is enthusiastically
interested in devoting time, effort, and
resources toward supporting another
!le format. Application scientists often
expect the visualization side to do all
the data reading efforts and frequently
state that, “I won’t use your visual-
ization application if it can’t read my
data.” A valid and reasonable statement
at the !rst sight, but again, the Web
browser comparison comes to mind:
visualization of datasets is expected
to be as easy as browsing a website.
This analogy does apply, but with an
essential difference: Web site creators
provide images in a format that the
Web browser understands, be it JPEG
or GIF or PNG. Web content creators
wouldn’t expect a Web browser to
support their own homegrown !le

formats and wouldn’t refuse to exam-
ine their own data until such support
was offered by the browser developer.

In the scienti!c visualization con-
text, the application scientist is some-
what in the content creator’s position,
while the visualization person is in the
position of writing the “data browser.”
The main difference is that well-
established standards exist for images,
but not for 3D data or for complex
meshes or even for such simple cases
as scalar !elds on uniform grids. Actu-
ally, this context offers a particularly
absurd situation: more complex data
sets might have fewer !le format issues
because, for complex data types, only
one !le format might exist. In contrast,

for a simple data type, there might be
many competing format options.

Clearing a Path to a
Common Data Model
Overcoming the gap between ap-
plication scientists and visualization
developers when it comes to !le formats
requires mutual investment from both
sides. In a fruitful cooperation, appli-
cation scientists provide the appropri-
ate knowledge and human resources
to make their data “readable.” In a less
fruitful collaboration, they provide
data !les with improper documenta-
tion on how to read them or reading
routines that are speci!c to a software
environment and not applicable to the
visualization environment (such as us-
ing commercial libraries or complex
functionality not available to the visu-
alization). Surprisingly, the application

scientists often don’t even know their
own data formats. They treat their
simulation tools as black boxes: some
else has written the code, so they can’t
answer questions about how to read
the data !les that they themselves pro-
vide. And, as mentioned earlier, self-
invented !le formats frequently entail
silently introduced and highly frus-
trating changes that aren’t announced
to the visualization side. Such issues
would be another reason to use estab-
lished !le formats for communicating
data—if such formats existed.

Bridging the File Format Gap
A big hurdle for establishing a stan-
dard !le format for scienti!c data is

the incompatibility of data structures
themselves. Not all !le formats can
cover all data types that occur in sci-
enti!c simulations and visualization.
A standard !le format that enables
true interoperability across indepen-
dently developed applications would
need to cover all different cases within
the same model. At this point, philo-
sophical beliefs come into play: many
people simply don’t think this is pos-
sible at all. Rather, the mainstream ap-
proach appears to be “special problems
need special solutions,” which results
in myriad specialized !le formats and
a list of special cases to be handled by
some visualization application. Such
beliefs are hard to overcome.

Many application developers focus
on only their own application (which,
of course, produces the papers) and
seldom see things in a larger context.
Nevertheless, there are a few attempts
at establishing a common data model.
One of the !rst common data model
proponents was David Butler, who
said, “a common language for the in-
terchange of scienti!c data exists—this
is the language of mathematics, which
is common to all simulations—we just
have to use it.”1 He then proposed to
model data using mathematical con-
cepts based on the theory of !ber
bundles. These ideas have been suc-
cessfully implemented in the IBM
Data Explorer, which is available as the
OpenDX open source tool.2 OpenDX
comes with its own !le format, which
is powerful enough to cover a wide
range of data types.

OpenDX users are generally quite
pleased with its "exibility. However,
it’s also complicated to use and its de-
velopment has become dormant. So,
despite a powerful internal data model,
OpenDX doesn’t provide state-of-the-
art rendering and visualization tech-
niques. On the other hand, the !ber

Self-invented !le formats frequently entail highly

frustrating changes that aren’t announced to the

visualization side.

CISE-11-6-visu.indd 4 10/1/09 2:40:43 PM

NOVEMBER/DECEMBER 2009 5

bundle data model—which can pro-
vide generic algorithms3—is mostly
unknown to modern visualization
software tools, which usually provide
highly specialized visualization algo-
rithms for speci!c data structures. The
OpenDX !le format in its generality
isn’t supported elsewhere. This means
that support for a speci!c visualization
application’s speci!c !le format is done
on a tedious, case-by-case basis.

HDF5
Managed by the nonpro!t HDF group,
HDF5 (www.hdfgroup.org/HDF5)
is a promising !le format that
was originally developed at the Na-
tional Center for Supercomputing
Applications.

HDF5:

provides many unique features,
was designed for high performance,
has a large user community,
is in active development with long-
term support plans,
comes with a well-documented API,
and, most importantly,
provides a self-describing !le format.

HDF5 is receiving increasing sup-
port from many applications. Data
provided in HDF5 format solves the
big problem of how to read data. Us-
ing the HDF5 tools, developers can
easily determine the !les’ contents.
The HDF5 library API provides neat,
well-documented routines to perform
these operations.

However, providing data in HDF5
doesn’t solve the problem of being
able to retrieve the data completely.
It only shifts this problem to a higher
level, from the syntax (how to read
the data) to the semantics (how to in-
terpret the data). That is, being able
to read and interpret one HDF5 !le
doesn’t mean you can interpret other

arbitrary HDF5 !les as well; it’s not a
data model per se, but rather a multi-
dimensional arrays container (that also
provides other highly useful features).

HDF5 is best compared to a con-
tainer !le format, such as an AVI
movie !le, which acts as an envelope
for movies. But how the movie’s image
frames are actually stored depends on
the video codec that’s used. If such a
codec isn’t available when reading the
AVI !le, it’s unreadable, even though
it’s an AVI !le. The same is true
with HDF5: the !le format is "exible
enough that you can write a speci!c
data type in many different layouts.
However, if the writing application
and the reading application don’t
agree on how to lay out the data, the
data are still unreadable, even though
they’re stored in HDF5 format.

The simpler a data type is, the
more possibilities exist for different
layouts. For example, for a 3D sca-
lar !eld on a uniform grid, it might
sound straightforward simply to store
it as a 3D dataset in HDF5. However,
a dif!culty arises with the associated
metadata, such as coordinate informa-
tion, or the physical time associated
with a time series. You can store such
information via attributes, but doing
so requires agreement on the attri-
bute names. Introducing conventions
is always a bottleneck in achieving
interoperability. As it turns out, the
fewer the required conventions, the
less error-prone the implementations
will be. Ideally, a !le format should be
keyword free—that is, all its semantic
information should be contained in a
logical layout that leads everyone in
the same direction, without need for
negotiating naming schemes for key-
words and their meanings. Indeed, I
remember weeklong discussions with
colleagues on whether some attri-
bute should be called “Size” or “size”;

everyone had a strong preference for
one or the other. Unfortunately, such
decisions, which are based simply on
matters of taste, can make !les un-
readable if the outcomes don’t agree
or they change over time. Therefore,
it’s best to avoid naming conventions
entirely if possible. I tackled this chal-
lenge with !ber bundle HDF5 (F5; see
www.!berbundle.net), which I’ve been
developing for my own visualization
environment.

The F5 File Format
F5 arose out of the need to support
many different data types and their
properties in the numerical relativity
context. Many quantities that are im-
plicit in Euclidian geometry—such as
coordinate systems and metric tensor
!elds—are handled explicitly in general
relativity. Given this, a !le format that
can support this general case is likely to
also support many other cases.

Six-Level Hierarchy
Inspired by Butler’s initial (but ab-
stract) considerations on using !ber
bundles to model data and its success-
ful implementation in OpenDX, F5
uses HDF5 to lay out data in a hier-
archical structure with six levels, each
with a speci!c semantic meaning:

Time slice1.
Grid name2.
Topological skeleton3.
Coordinate system4.
Field name5.
Field fragment (optional)6.

Only the !fth level and above con-
tain actual data sets. Rather than using
keywords, the metadata information
is expressed by the placement of en-
tries in the hierarchy. The topmost
level de!nes a time series. The second
level contains an arbitrary, user-chosen

CISE-11-6-visu.indd 5 10/1/09 2:40:44 PM

V I S U A L I Z A T I O N C O R N E R

6 COMPUTING IN SCIENCE & ENGINEERING

name for the “Grid” geometric entity.
The third level provides entries for the
Grid’s topological properties, such as its
vertices, cells, or edges. The coordinate
system level refers to data given in Car-
tesian coordinates, polar coordinates,
and so on. The !fth level is for !elds
and consists of multi dimensional data
sets. In the sixth, optional level, these
data sets can be fragmented into small-
er parts, which are useful, for example,
to handle output from a parallelized
simulation code where each compute
node deals only with a !eld subset for
the global computational domain.

The data layout is largely keyword
independent because the entry names
are irrelevant. The only agreement is
to store data on a six-level hierarchy
and associate semantics with each
level. In practice, the layout isn’t com-
pletely keyword free, however, because
a minimal attributes set still must be
attached to some objects. Neverthe-
less, the intent is to keep the set of such
“reserved words” as small as possible.
We can therefore view the F5 model
as an (intentionally) keyword-free
version of the OpenDX model that
groups “compatible” arrays together.

API Complexity
A major reason why previous attempts at
establishing a common data model have
failed is that their APIs exposed the data
model’s full complexity. Clearly, if you
need to store only one simple data type,
you’d prefer to avoid the considerable
overhead that accompanies the entire
generality of a common data model.

A complex, powerful, generic API is
more intimidating than encouraging.
The F5 model therefore comes with
a library that is built upon HDF5 and
provides a lightweight API for writing
common data types in a simple way, such
as with a single API call. Still, the API
allows access to the deeper functions,

so, for more complex—and currently
unsupported—data types, you can direct-
ly use the underlying HDF5 functions
to write the data in a layout compatible
with the !ber bundle concept.

Supporting only this F5 format in
the visualization application is much
easier than supporting a dozen !le
formats. You therefore have to convert
speci!c !le formats into the F5 format
before you can visualize it. You can do
this in collaboration with the data de-
veloper; the HDF5 library itself is well
documented and the F5 library simple
enough that other people can quickly
learn how to use it (in contrast to a
complex visualization application).

Adding new !le format support to a
visualization application isn’t as simple
as writing “a reader”—that concept ac-
tually works only for simple cases where
you can keep the entire data set in mem-
ory. Nowadays, however, with datasets
much larger than the RAM available on
local workstations or even visualization
clusters, reading all the data at once isn’t
really an option. The objective instead
is to read only those data that a speci!c
visualization operation requires. For
example, a data subset or the metadata
alone are often suf!cient, such as when
you’re displaying the bounding box of
some geometry. HDF5 provides a clear
separation of data and metadata, and
provides mechanisms to retrieve only
subsets for data arrays (hyperslabs). A
visualization application that uses such
features couldn’t easily support another
!le format that doesn’t provide similar
functionality.

To visualize someone’s data, you
must !rst be able to read them.

As with many things, such an alleg-
edly simple task can evolve into a ma-
jor time-consuming effort. Overnight
“just do it” approaches are typically

unrealistic and lead to mutual frustra-
tion. A successful visualization proj-
ect requires investment from both
parties—the data provider and the
visualizer—and keeps in mind every-
one’s research priorities. No one wants
to invest the time needed to imple-
ment !le converters at the expense of
research hours.

Reading data entails practical chal-
lenges, and the F5 format is an attempt
to tackle them. Although F5 doesn’t
claim to be the ultimate solution, my
hope is that its spirit and design phi-
losophy will !nd support in similar
attempts.

References
D.M. Butler and S. Bryson, “Vector 1.

Bundle Classes from Powerful Tool for
Scienti!c Visualization,” Computers in
Physics, vol. 6, no. 6, 1992, pp. 576–584.
L.A. Treinish, “IBM DX Data Explorer 2.

Data Model,” IBM Research, 1997;
www.research.ibm.com/people/l/
lloydt/dm/dx/dx_dm.htm.
W. Benger, “Colliding Galaxies, Rotat-3.

ing Neutron Stars and Black Holes—
Visualizing High Dimensional Data Sets
on Arbitrary Meshes,” New J. Physics,
vol. 10, 125004 2008; http://stacks.iop.
org/1367-2630/10/125004.

Werner Benger is a visualization researcher
at the Center for Computation & Technology
at Louisiana State University. Before joining
CCT, he worked at the Zuse-Institute Berlin
to develop the Amira (now Avizo) visualiza-
tion software in collaboration with the Max
Planck Institute for Gravitational Physics
(Albert Einstein Institute) in Potsdam,
Germany. His research interests include visual-
ization of astrophysical phenomena, focusing
on tensor !elds. Benger has a master’s degree
in astronomy from the University of Innsbruck,
Austria, and PhD in mathematics and com-
puter science from the Free University Berlin.
Contact him at werner@cct.lsu.edu.

CISE-11-6-visu.indd 6 10/1/09 2:40:45 PM

