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1. Introduction 

1.1. Diffusion Tensor Magnetic Resonance Imaging 

Magneto-Resonance (MR) Imaging allows retrieving information about tissues by 
emitting a magnetic pulse and measuring the electro-magnetic radiation as emitted 
from hydrogenium atoms. Depending on the structure of this magnetic pulse, 
different hydrogenium atoms are selected and diverse properties of the tissues, in 
particular depending on the content of water, can be highlighted. In a more 
elaborated version, a sequence of signals can be combined with a strong gradient 
magnetic field to retrieve information about the motion of water molecules along 
the direction of this gradient. This diffusion of water in tissues is not isotropic in 
general, and especially neuronal fibers constrain diffusion along their orientation. 
Thus this image acquisition technique yields best results in brain tissues where the 
density of neuronal fibers is very high. In its most simple form, anisotropic diffusion 
is modeled by a symmetric tensor field, i.e. a symmetric 3×3 matrix given at each 
point in a volume as built from six independent measurements. As there are six 
times more quantities given per point as in a standard MR image, the question 
rises how to visually best represent these data. 

1.2. Reduction to Scalar Fields and Fiber Tracking 

Various quantities can be extracted computationally from a diffusion tensor field 
and be displayed as a usual image (i.e., as grayscale image or via artificial color 
coding to enhance details), similar to MR or CT data. However, there is no unique 
way to reduce the six available quantities to a single one, and several such 
measures have been proposed. Among them is the widely used fractional 
anisotropy (FA) which indicates the strength of water diffusion in dominantly one 
direction. Alternative indicators are the shape factors as introduced by Westin et 
al., 1997. There are three such shape factors indicating whether diffusion occurs 
dominantly in one, two or three directions. The respective indicators are called the 
linear, planar or spherical shape factors. They are computed from the eigenvalues 
of the diffusion tensor field and dependent on each other. A large spherical shape 
factor indicates isotropic diffusion, for instance in ventricle filled with fluid. A large 
linear shape factor indicates diffusion constrained to one direction and may be 
interpreted as areas with high density of aligned neuronal fibers.  
 
A common approach is to try extracting the structure of the neuronal fibers from the 
diffusion tensor data. This is done by determining the dominant eigenvector of the 
diffusion tensor, and tracking a neuronal fiber by computing an integration line that 
is tangential to the dominant eigenvectors. This approach yields three-dimensional 
line structures that resemble the textures known from anatomical dissections of 
brain tissue. However, this straightforward approach is numerically unstable, as the 
dominant eigenvector is only uniquely defined where diffusion is highly linear. In 
planar or isotropic regions, the dominant eigenvector becomes undefined and the 
computed fibers are sensitive to numerical artifacts. Various approaches have 
been proposed to stabilize the approach of fiber tracking, e.g. the method of 
tensorlines (Weinstein, Kindlmann, Lundberg; 1999). 



2. Visualizing Using the Method of Tensor Patterns 

In our approach presented here we seek to display the full information content of a 
diffusion tensor field, without reduction to a single quantity, and robust with respect 
to numerical artifacts (Benger et al, 2006). 
 
The six quantities of a diffusion tensor may be represented as an ellipsoid at each 
data point. The extent of this ellipsoid in each direction in space indicates the 
amplitude of water diffusion in this direction. However, ellipsoids are not a good 
visual representation, as they occlude each other and small variations in the 
diffusion properties are hard to glimpse. In the method of Tensor Patterns we 
employ Gabor Patches to represent the six quantities of the diffusion tensor. The 
concept of a Gabor Patch originates from vision research theory and provides an 
optimal visual stimulus (Gabor, 1946). It is represented as a two-dimensional disc 
that is transparent at its rim (transparency defined via a Gaussian function) and a 
linear texture adding a sinusoidal pattern on top of this disc. We may orient the disc 
in three dimensions according to the two dominant eigenvectors of the diffusion 
tensor, and the linear texture parallel to the most dominant eigenvector. 
 
The frequency of this linear texture is now related to the linear shape factor of the 
diffusion tensor such that this texture vanishes in regions where the linear shape 
factor vanishes as well. In such regions, the Gabor patch reduces to a disc with 
radially symmetric Gaussian transparency falloff towards its rim. In such regions 
diffusion happens in the plane represented by this Gaussian disc. The overall 
transparency of the Gabor patch is also related to the spherical shape factor such 
that it becomes transparent when the spherical shape factor is large, indicating 
isotropic diffusion with no directional preference at all. Regions of isotropic diffusion 
are thus visually suppressed by this approach, whereas anisotropy is enhanced. 
Additionally, we may colorize the Gabor patches to emphasize linear versus planar 
regions. We use red to depict planar regions and green to depict linear regions. 
 

 
Figure 1: Artificial dataset representing the parameter space of diffusion - planar (lower left vertex), 

linear (lower right vertex) and spherical (upper central vertex). Each data point is represented by a so-
called Gabor patch. Appropriate scaling - as demonstrated in the right image -  

yields a visually smooth appearance. 

Figure 1 demonstrates the visual representation of the most extreme cases of 
anisotropic diffusion. The linear, planar and spherical shape factors depend on 
each other equally to the barycentric coordinates within a triangle. In the lower right 
vertex of this artificial tensor field as defined on the edges of a triangle, the planar 
and spherical shape factor are zero, the linear shape factor is one. The tensor field 
is represented by an ensemble of green "needles" pointing into the direction of the 



dominant eigenvector (which, in this setup, is oriented parallel to the lower edge of 
the triangle). The lower left vertex represents vanishing linear and spherical shape 
factor with large planar shape factor, rendered by a red disc in the plane of the two 
dominant eigenvectors. The upper central corner relates to an isotropic region of 
no dominant eigenvector and is rendered transparent. This visual representation 
allows a smooth transition covering various values of the shape factors. Scaling 
these Gabor patches such that they overlap each other yields a visual impression 
as if they were connected into lines (as demonstrated in the right image of Figure 
1). However, this impression is just perceptual, an effect known in perception 
theory as association field (Field, Heyes, Hess; 1993). Unlike numerically 
computed integration lines, they are not vulnerable to accumulating numerical 
errors because they are always build from a local representation of the tensor field. 
Moreover, these perceptual lines have a variable width that is able to convey the 
influence of the second eigenvalue, and thus directly visualize the uncertainty of 
the dominant eigenvectors. 
 

3. Diffusion Tensor Field of a Brain Tumor 

Fiber tracking is used to investigate possible connectivity between certain regions 
in the human brain. Such is of particular interest in conjunction with functional MR 
imaging. However, due to the aforementioned uncertainties in fiber tracking this 
field of tractography is still subject to ongoing research and considered an 
experimental technique (see also S.Deoni, 2005).  
 
Contrary to tractography, the investigation of the influence of brain tumors on their 
surrounding tissues requires local information rather than global connectivity. Here 
we show results of applying the technique of Tensor Patterns upon a DT-MRI 
dataset as provided by H.Kitzler, Uniklinikum Dresden, as acquired from a patient 
with a tumor. Figure 2 demonstrates rendering as a scalar field with color-coding, 
where the trace of the diffusion tensor was selected as representative indicator for 
the absolute value of diffusion velocity (green: small values, red: large values). 
Anatomical features such as the eye (lower left) and cortex are easily identifiable. 
The tumor itself shows up in the center of the image with higher diffusion velocity, 
suggesting edema-like properties of the tissue in its periphery. Major parts of the 
brain however appear homogeneous. The diffusion tensor image rendered using 
the aforementioned tensor pattern technique yields details in just those regions 
(right image in figure 2). 
 

 
Figure 2: Scalar (left) and tensor (right) visualization of a DT-MRI dataset containing a brain tumor. 

 
The diffusion tensor image is very rich in information and requires to be viewed at 
high resolution, as the color scheme by itself only indicates the predominant 
diffusion properties. Green regions indicate white matter with linear diffusion along 
bundles of neuronal fibers. The spatial resolution of DTI is orders of magnitudes 
above the size of a single neuronal fiber - one volume point (at the size of about 1-



2mm) contains about 1000 fibers. The average signal of two bundles of fibers 
crossing (or, a single bundle bending within one volume element) yields a planar 
diffusion signal. Such features are visible with appropriate resolution, as depicted 
in figure 3. Transparent regions, which show up dark in figure 3, represent 
averaged isotropic diffusion, which can be due to ventricles, gray matter or volume 
elements where three directions of fiber bundle tracts cross. The tumor in the 
center is more isotropic than the surrounding tissue; it is remarkable to find that the 
neuronal fibers appear to bend around this central region. This influence of the 
tumor's pressure is only visible by visualizing the directional information of the 
diffusion tensor. The complexity of the visual representation however requires 
some training to comprehend the huge information content. 
 

 
Figure 3: Detailed overview of the diffusion tensor image, indicating the pathways of neuronal fibers 

around the brain tumor. 

While figure 2 and 3 merely display a top view of a slice through the actually 
volumetric data set, all information is intrinsically three-dimensional. A VR 
environment with stereographic projection capabilities supports communicating the 
full information content. It is very well possible to combine the transparent tensor 
patterns with other three-dimensional geometric representations, such as 
demonstrated in figure 4, using an orthogonal slice representing a scalar field. The 
tensor patterns itself may also be used within a volume rather than just a slice; this 
fully volumetric representations are hard to analyze. Nevertheless by appropriate 
choice of parameters controlling transparency, this approach may well be used for 
data mining purposes of a six-dimensional dataset over a three-dimensional data 
volume.   



 

Figure 4: Combination of a horizontal slice of transparent tensor patterns with a vertical slice of a 
complementary scalar field visualization. 

The shape factors represent only relative information about the dominance of the 
direction of diffusions, but do not convey information about the absolute diffusion 
velocity. A possible choice is to map the absolute velocity, given by the trace of the 
diffusion tensor, to the color saturation, as demonstrated in figure 5. Whitish and 
pale regions thus represent regions of fast diffusion. The corpus vitreum is 
apparent as brightly white region. The tumor tissue becomes grey, indicating high 
diffusion velocity, in addition to the isotropy. The fast and isotropic diffusion might 
be due to an edema.   
 

 
Figure 5: Adding color saturation to tensor patterns to represent absolute diffusion velocity. 

The approach to visual represent a tensor field by colored Gabor patches is well 
supported by vision research theory.  Mojsilovic et al., 2000, investigated the 
perception of color patterns. They identified a five-dimensional parameter space 
that determines how we recognize regions of similarity. They found the property of 
"equal patterns" (orientation and regularity) to be the most relevant rule. This 
observation supports well the perceived continuity of association fields even 
through regions of different colorization. The "overall appearance" (colorization and 
orientation) of a pattern is of subordinate relevance. The current technique of 
Tensor Patterns does not fully utilize the full parameter space of color pattern 
similarity. Table 1 summarizes the mapping of diffusion tensor quantities to their 
visual representation. Further ongoing research may explore the capabilities of 
utilizing even more of the perceptual parameter space to display additional 
quantities on top of the tensor field, or tensor fields of higher order. Additional 

http://dict.leo.org/ende?lp=ende&p=wlqAU.&search=Corpus
http://dict.leo.org/ende?lp=ende&p=wlqAU.&search=vitreum


quantities of interest are in particular alternative MRI measurements such as T1 
and T2 images, as these provide additional information about the tissues. There
also exist experimental data acquisition techniques that allow to measure more 
than six diffusion directions. These might be used as a validation tool to assess th
quality of the retrieved d

 

e 
ata, or to implement a model of diffusion beyond using a 

nsor of second order. 

Tensor Property Quantities Visual Representation 

te
 

Max Eigenvector direction 2 Major orientation 

Median Eigenvector 1 Minor orientation 
Isotropy (Spherical shape 1 Transparency 
factor) 
Planar vs. Linear shape 1 

ation factor 
Texture frequency and 
red/green coloriz

Absolute Velocity (trace) 1 Color saturation 
Full tensor 6  Tensor Pattern 

Table 1: Mapping of tensor quantities to graphical representation 
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