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Abstract

VISH is a novel application interface aiming at the separation of
algorithm implementation from the software environment they run in.
It provides different layers of abstraction to shield algorithms from
application-specific details. On the coarsest level, these are generic
objects with parameters, on the finest level, this is a concrete model for
scientific data covering a wide range of data types. Special attention is
given to algorithms for scientific visualization. The objective is to have
algorithms only implemented once and share them, together with the
data, among applications, even in binary form. This paper presents
the concepts and current implementation status in C++.

1 Introduction

1.1 Motivation

Although Scientific Visualization is an established field, the gap between al-
gorithm development and accessibility of new visualization techniques to a
wider audience, especially application scientists as end-users, is still a fre-
quent hurdle. New techniques are either implemented as minimal standalone

1



versions using libraries such as GLUT or as a plugin to a larger, sometimes
proprietary, software environment. Both methods serve well for the develop-
ment process, but complicate the wider deployment of the algorithms because
they are bound to their runtime environment. Therefore they do not neces-
sarily integrate well into the daily work flow of an application scientists due
to limitations of that specific environment for his own purpose.

We envision a software environment that allows to develop and implement
visualization algorithms with

• independence from a specific application; ideally, such that even pre-
compiled algorithms can be shared among applications and users;

• minimal overhead on dependencies and external components;

• easy deployment to end users, i.e. support for application-specific file
formats and user-friendly GUI without impacting the visualization al-
gorithm itself;

• accessibility to all levels of interfacing hardware;

• high reusability of algorithms, in particular also including I/O layers
(support for diverse file formats, remote data access etc.).

This may be achieved via some visualization microkernel that may serve
as an “operating system for visualization algorithms”. A minimal abstract
API shall serve as a framework for development and allow sharing of plu-
gins throughout applications, which provide implementations of the same
interfaces.

This is the vision of VISH as a “visualization shell” (“shell” in the sense
of a “structural work” or “skin”). It is not an another application by itself,
but an implementation of the infrastructure necessary for scientific visual-
ization and therefore a collection of interfaces in the form of libraries. The
implementation of such interfaces (such as an input method for an integer)
is left to a specific application environment. Algorithms will just see the
VISH API (such as to formulate the request for an integer value) and remain
application independent.

VISH encompasses different levels of abstraction: the VISH kernel (sec-
tion 2) provides only interface functionality for general purpose objects with
parameters. A data model for scientific visualization is provided by the Fiber-
Lib2 (section 3) and complements the VISH kernel. While the VISH kernel
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basically abstracts event handling and data flow, the FiberLib2 functionality
also allows to handle and share data sets among applications. Both com-
ponents can be used independently, but are designed to integrate well with
another, thus forming the FiberLib2-VISH (or shortly “FISH”) environment
(see Fig. 1 for a depiction of the relationships of the VISH components).
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Figure 1: Based on the memory management facilities of MemCore, the
VISH and FiberLib2 libraries provide abstraction interfaces for object op-
erations and formulating scientific data, respectively. A newly implemented
visualization algorithm would only communicate with these layers, whereas
the concrete application behind builds on them or implements the interfaces.

1.2 Previous Work

The IBM Data Explorer [Treinish, 1997] has a long history as a tool for
scientific visualization. Its design concepts (in particular its data model
based on fiber bundles) were so well founded, that it is still actively used
even though its implementation concepts are outdated and active develop-
ment has ceased. Both Amira [Stalling et al., 2005] and Ensight [CEI, 2007]
are widely used visualization environments, but are proprietary, whereas the
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open source model offers many benefits to both academia and industry, and
to both researchers and end users [Johnson et al., 2006]. The visualization
toolkit [Kitware, 2005] is a well known open source collection of algorithms,
but is far from being a microkernel. SciRun [SCI, 2007] is a recently released
open source solution, but a complex application by itself and quite intru-
sive for visualization algorithms. GLUT1 is a convenience library based on
OpenGL frequently used to demonstrate proof-of-concept, but is not aiming
at providing end user friendly applications.

2 The VISH Kernel

The VISH kernel is the API that plugins and application code see. All
interactions from application code and with algorithms are through this API.
This kernel itself consist of a collection of libraries which are contained in
a common folder called “ocean” (the ocean is what is required to let fish
swim). The main library is the “plankton” library (plankton are the smallest
animals in the ocean and are essential to nourish fishes). Dependencies of
the plankton library to external libraries are kept to a minimum, the only
requirement is the “memcore” library that provides reference pointer and
similar functionality in a generic way. Another component of the VISH kernel
is the GLvish library, which adds objects with OpenGL rendering capabilities
to the VISH kernel. The vscript library implements one possible scripting
interface to the VISH objects; other scripting languages such as tcl or python
are possible as well. However, these libraries will not be discussed here.

2.1 MemCore Functionality

The MemCore library implements means for automatic dynamic memory
management. Similar to e.g. the Boost smart pointers [Colvin, 1994], it sup-
ports the concept of weak and strong pointers (implementation details are
given on p.81 – p.83 in [Benger, 2004]). In addition, these pointers allow im-
plicit up- and downcasting within the same class hierarchy, thereby enabling
very compact code when querying objects at runtime such as in:

struct A {};
struct B : A {};

1http://www.opengl.org/documentation/specs/glut/spec3/spec3.html

4

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html


void f(const RefPtr<A>&a)
{

if (RefPtr<B> b = a ) { /* it’s a B object*/ }
}

In the MemCore library, any strong pointer is automatically a weak
pointer as well. As a consequence, if the referenced object is destroyed ex-
plicitly, then all strong pointers become invalid. Thus, reference pointers
may as well point to automatic, static or dynamically allocated objects that
are deleted explicitly.

Another feature of the MemCore library are typemaps, that allow to as-
sociate objects with C++ type information. The resulting objects can then
be indexed using typeid():

std::map<type_info, string> TypeName;
TypeName[ typeid(int) ] = "Integer";

In practice, the type info type is not directly suitable as a key to STL
maps and some intermediate class is employed. Note that only some ordering
relationship among type information instances is necessary. This is provided
natively by any C++ implementation and guarantees a bijective association
in a platform-independent way.

Typemaps are useful to enable an dynamic interface mechanism to ob-
jects, similar to the interface concept in Java as an alternative to multiple
inheritance. The MemCore library allows to add and remove interfaces to a
base class “Intercube” (inspired by the notion that a cube has many faces)
at runtime. It is basically a type map that associates a type domain to some
interface object. Dynamic interfaces are very useful to allow plugins to add
properties to existing objects that are managed in a central library.

Note that in the following section we will use native pointers in the code
examples for illustration, though in the actual implementation only strong
and weak pointers are employed.

2.2 Object Management in VISH

The VISH plankton library provides a common pool of “managed objects”
(class VManagedObject). They are contained in a global associative container
that allows to address each object via some type ID (the managed object’s
domain) and a user-defined unique text. Schematically, the pool of managed
object is of a signature such as (using the STL standard map):
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map<type_info, map<string, VManagedObject*> > ObjectPool;

An arbitrary object may now be retrieved via some type information, and
an arbitrary name:

VManagedObject*MyObject = ObjectPool[ typeid(Domain) ][ "Name"];

An example for managed objects are Creators. Their constructor inserts
them automatically into the ObjectPool using a “Creator” type domain.
Within this domain they may be accessed via a a unique textual identifier.
They may well be implemented as static objects within a dynamic library,
such that this Creator object is visible in the ObjectPool once the library is
loaded. Upon unloading the dynamic library, when the Creator’s destructor
is called, it will automatically become invisible in the ObjectMap due to the
use of MemCore’s reference pointer scheme. The base class of these Creator
object comes with a virtual function that allows to create a certain category
of objects, which are introduced in the next section.

2.3 Objects, Parameters and Inputs

The basic instance in VISH are abstract objects that may perform some op-
eration based on some input parameters and may serve as input themselves;
these are called VObjects. VISH provides means to expose these input pa-
rameters, equip them with appropriate input objects, and to connect or share
them with other VObjects. The relationship among objects, their parame-
ters, and inputs of them defines the core functionality of VISH (see Fig. 2
for illustration):

• A VObject is an abstract class that implements some functionality
controlled by input parameters. Its results are provided as output
parameters.

• A VParameter provides means to retrieve numerical values. Multiple
VObjects may refer to the same VParameter such that they can be
easily coupled (for instance, different visualization algorithms operating
on the same slice of the same volume, but different data fields).

• A VInput implements an actual numerical value and the means to
modify it. A typical example is a slider within a graphical user interface.
Alternative representations of the same value are desirable, such that
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Figure 2: VObjects request VParameters via intrinsic C++ types, which are
implemented via one or many VInputs.

a problem-specific representation can be chosen (e.g. a dial widget
instead of a slider). Since such a representation may well depend on
the context, also multiple representations of the same value are allowed
(all referring to the same VParameter).

Considering these requirements, we may illustrate the central VISH classes
schematically via native C pointers (note that the integer data type is only
used for exemplification, the actual code uses weak and strong pointers on
on abstract type-independent base classes):

struct VObject // some VISH object doing something
{

int **red; // a parameter to the VObject

void update() // the object’s operation
{

printf("My red value is %d\n", **red);
}

};
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I.e., the numerical value of the object is not contained in the object itself, but
only retrieved indirectly. The VObject needs to dereference the pointer twice
to get the actual value. This indirection allows multiple objects to share the
same value:

VObject A, B;
A.red = B.red;

The double indirection allows to change the implementation of a certain value
for all instances simultaneously:

int a, b;
int *value;
VObject A, B;

B.red = &value;
A.red = B.red;
value = &a; // drive A and B objects via value a
value = &b; // drive A and B objects via value b

VISH generalizes this basic idea through abstract objects. They are template
instantiations over arbitrary C++ types and are derived from abstract base
classes. Conceptually, the ints in the above example correspond to the
VInput objects, and the first indirection, the int* to the VParameters:

• Both input and output parameters of VObjects are bound to an intrin-
sic C++ type.

• A specific VObject may

– request VParameters, each such request is specified via a C++
type info plus an associated text. Such input parameters may be
shared among VObjects.

– provide VParameters, which are then bound to this certain ob-
ject. It is the duty of the respectively owning VObject to update
those outputVParameters with the correct numerical values. Such
output parameters may well be used as input parameters of other
VObjects. This relationship among VObjects thus forms a graph
among VObjects, called the data flow graph since it corresponds
to the flow of data among VObjects.
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• One VParameter may be represented by one or many VInputs. If one
VInput is modified, then its corresponding VParameter will be noti-
fied about this change and forward this notification to all other as-
sociated VInputs. Thus different representations have the means to
update themselves to display the changed value. The relationships
among VParameter and VInput forms a graph, which is called the con-
trol flow graph since its values controls (parameterizes) the behavior of
the VObjects.

The control flow graph is executed synchronously to the user interaction. In
contrast, the data flow graph is only traversed when data are requested by
some data sink (a VObject that resides at the end of the data flow graph, i.e.
it has only inputs, but no outputs), i.e. asynchronously to user interaction.
For instance, within a graphical display, such a data sink may be implemented
by some OpenGL viewer that requests new data to be updated at 30 frames
per second, or it may be some VObject which saves data to a file.

In the data flow model, VISH implements the push model (the data sink
determines traversal of the data flow graph), like VTK [Kitware, 2005], not
the pull model (the data source drives traversal through the data flow graph),
like Amira [Stalling et al., 2005]. Only those data that are supposed to be
displayed (in a visualization context) are to be loaded on-demand from the
disk, for instance one time slice out of an evolution of a dynamic data set.

3 The FiberBundle Data Model

The fiber bundle data model is a generic scheme to cover a wide range of scien-
tific data types through a specific data structure that is inspired by the math-
ematics of fiber bundles. It draws upon concepts of differential geometry and
topology. The original ideas have been laid out by [Butler & Pendley, 1989]
and later refined by [Haber et al., 1991]. While many modern visualization
environments do not implement a data model at all and rather implement
the various data types on an ad-hoc basis (with more or less random overlap
of properties), the IBM Data Explorer (now OpenDX) [Treinish, 1997] has
successfully proved the benefits of the fiber bundle data model. The model
developed in [Benger, 2004] has extended the concepts found there in order
to further systematize and reuse the concept of a fiber bundle.

The FiberLib2 is a new implementation of the fiber bundle data model
from [Benger, 2004]. Fundamental to it are the six hierarchy levels Bundle,
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Slice, Grid, Topology, Representation, Field. Given one hierarchy
level, the next one is accessed via some identifier that is specifically appro-
priate for this level:

hierarchy object identifier type identifier semantic
Bundle floating point number time value
Slice string grid name
Grid integer set topological properties
Topology pointer relationship map
Representation string field name
Field multidimensional index array index

Only two of these identifier types are strings, and of arbitrary value. The
semantics of the grid and the field names are left to the application code
and the user. All other identifiers do have specific meanings in the fiber
bundle data model and are used to determine the specific properties of a
data set. In order to get from one hierarchy level to the next one, the
“[]” and “()” operators are used for modified indexing (the return value is
guaranteed to exist) and unmodified indexing (the return value will be zero
if no subhierarchy entry exists for the given index):

Bundle MyBundle;

Slice&S = MyBundle[ 1.0 ];

RefPtr<Slice> MySlice = MyBundle( 1.0 );

In this example, the operator “[]” will create an entry for the time t = 1.0
in the MyBundle object, if it does not exist yet. It provides a reference to
the Slice object that contains all data for t = 1.0. The operator “()” will
query the MyBundle object whether data exist for t = 1.0, and if not, return
an invalid pointer.

3.1 Topological Properties

The Topology level of the fiber bundle hierarchy describes a certain topo-
logical property. This can be the vertices, the cells, the edges etc. . It is
loosely connected to the skeletons of a cw-complex, but in this context also
used to specify different mesh refinement levels and agglomerations of certain
elements. Details are given in [Benger, 2004], whereas here the only property
of relevance is that all data fields that are stored within a Topology level
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have the same number of elements. I.e., they share their index space (a data
space in HDF5 terminology). Moreover, each Topology object within a Grid

object is uniquely identified via a set of integers, which are the dimension
(e.g., the dimension of a k-cell), index depth (how many dereferences are
required to access coordinate information in the underlying manifold) and
refinement level (a multidimensional index, in general).

3.2 Relationship Maps

Numerical values within a Topology level are grouped into Representation

objects, which hold all information that is relative to a certain “representer”.
Such a representer may be a coordinate object that refers to some cartesian
(or polar) chart, or it may well be another Topology object, either within
the same Grid object or even within another one. Given a Topology object
called Vertices and a chart object CartesianChart3D, we may retrieve the
representation of the Vertices in cartesian chart using the operator syntax:

Topology Vertices;

Chart CartesianChart3D;

Representation& CartesianVertices = Vertices[ CartesianChart3D ];

Given a Topology object describing the triangles of a Grid, we may retrieve
triangle information in cartesian coordinates in a similar way (e.g. surface
normal vectors of the triangles), but as well retrieve the information on how
the triangles relate to the vertices:

Topology Vertices, Triangles;

Representation & TrianglesAsVertices = Triangles[ Vertices ];

The inversion, the representation of the vertices via triangles, e.g. for de-
termining which triangles share the same vertex, is easily accessed by the
inverse operation:

Representation & VerticesAsTriangles = Vertices[ Triangles ];

Each Representation is a collection of Fields, which are basically multidi-
mensional arrays that are accessed via some textual identifier. The value of
this textual identifier is left to the application, with the mere exception of the
“Positions” entry. This specific field describes the locality of the elements
of one index space within the domain of the representer (e.g., within a chart,
or as set of indices).
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4 Example Application

The following example demonstrates how to set up a VISH object that defines
a time-dependent uniform vector field. It involves infrastructure components
from VISH , Memcore, and FiberLib2.

class Vectorfield : public VObject // Implement VISH object
{

Bundle B;
RefPtr<VParameter> TimeParameter; // refer to some parameter

public:

Vectorfield()
{

// request floating point parameter
TimeParameter = addParameter("time", 0.0);

}

void update() // virtual VISH function
{
double time = TimeParameter->getValue() // request parameter value

Slice &S = B[ time ]; // operating on FiberLib2 from here
Grid &G = S[ "unigrid" ];
RefPtr<Skeleton> Vertices = G.makeVertices(3);
RefPtr<Chart> myCartesian = G.makeChart( typeid(Fiber::CartesianChart3D) );
Representation&R = (*Vertices)[ myCartesian ];
RefPtr<Field> Coords = R[ "Positions" ];
MultiIndex<3> Dims = MIndex(31,43,53); // define size of the grid

typedef MemArray<3, tvector3> VectorArray_t;
RefPtr<Field> Vectors = R[ "vectors" ];
RefPtr<VectorArray_t> VectorData = new VectorArray_t(Dims);

Vectors->setData( VectorData, MemCache() );

ProcArray_t*PCrds = new ProcArray_t(); // define uniform coordinates
Coords->setData( PCrds, MemCache() ); // (details not shown)

MultiArray<3,tvector3> Vec = *VectorData;
/* Vec is a multidimensional array of vectors and

can be modified now, e.g. at index 4,4,4 with some
time-dependent value (in practice, all elements need to be set) */
Vec[ MultiIndex(4,4,4) ] = tvector3(1.0, 2.0, time);

}
};
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5 Results

VISH is still under an experimental development state, but the evolution
of the core infrastructure has widely settled down already. Using this in-
frastructure, a simple visualization algorithm like rendering vector arrows of
slice from a time-dependent uniform vector field can be realized in less then
300 lines of source code, including low-level OpenGL calls and parameter
steering. A reference implementation employing QT of a user interface as a
plugin to the VISH kernel has been developed. Alternatively there exists a
preliminary interface for the Amira visualization software, such that plugins
can be shared in binary form among these two environments.

6 Conclusion

Practical experience shows that newly developed visualization techniques
are not easily and quickly deployed by end-users. There exist complex –
and frequently proprietary – applications that are problematic to adapt to a
custom problem on one side, and there exist separate stand-alone versions of
highly specialized algorithms that cannot be used in general context on the
other side. The concepts of VISH intend to close this gap.

As part of the ongoing evolution, the VISH kernel has proved to suit well
the needs of an abstraction layer, since the requirements for further kernel
modifications have decreased as more functionality has been added to the
kernel’s periphery. Complemented with the fiber bundle component VISH is
able to cover a wide range of scientific data types as well, even in its early
phase. Future efforts therefore will now focus on plugin components rather
than on the kernel itself.

It will be part of future investigation also to test whether the VISH ab-
straction is sufficient to encapsulate even contradictory concepts such as the
push and pull model within the same application. The envisioned “worst-
case” scenario here is to have the entire VISH kernel appear as a single object
within another application without exposing its internal structure (i.e., the
collection of VISH objects and their relation to parameters).
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