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Abstract. We present a novel approach for studying a curved spacetime
in a holistic, but still intuitive way. Using this approach, laymen and new-
comers have a way to comprehend the properties of curved space with-
out knowledge of the abstract mathematical formalism of non-euclidean
spaces. Moreover, certain phenomena observable in astronomy can be
demonstrated via familiar objects.

1 Introduction

The concept of curved spacetime is the core part of general relativity, but fre-
quently people interested in relativity are deterred by its abstract mathematical
formalism. Visual representations, if used at all, frequently lack appropriateness
or are only accessible for scientists that work long in their specific field (see
e.g. [1]). Depictions used in Hollywood movies are often based on simplified sci-
entific visualizations that are used out-of-context. It is frequently heard that the
general audience would not even appreciate physically correct visualizations. We
do not adhere to this opinion and instead claim that a physically correct depic-
tion of general relativistic phenomena transports much more realism, even on an
unconscious level, resulting in an ultimately higher tension. Still, it is possible
to communicate the properties of curved spacetime in an intuitive manner with-
out the overhead of abstract mathematics by choosing proper visualizations. In
particular as the theory of general relativity is a theory of geometry, it is repre-
sentable by geometrical means. Applying these geometrical means to an familiar
environment appears essential in this respect, and this is the path followed in
this presentation.

We also note that some of the techniques discussed here might also be applied
for situations beyond general relativity. It was shown that an optically active
medium with spatial varying index of refraction can be described by the means
of general relativity [2]. Recently it was speculated that even artificial black holes
could be created via fluids [3], thus some of the experiments performed here in
a virtual lab could possibly be examined in a real lab sometime in the future.

The tool used in our work is the Light++ raytracer [4], which has its roots in
the early 1990’s. It is a self-standing rendering engine and as such free from any
constraints imposed by standards such as OpenGL. Virtual reality languages,
such as VRML or X3D, are used to display explicitly modeled objects or to
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visualize the result of a simulation performed elsewhere. In contrast, Light++
allows to directly model a physical phenomena and yields a visual result based
on the implemented laws of physics. Hereby the boundary among visualization
and simulation vanishes, as the visualization is a simulation itself.

1.1 Previous Work

The most prominent application of Einstein’s concept of curved space the gravi-
tational field of a black hole. According to general relativity, a black hole has no
more than three properties: mass M , electrical charge Q and angular momen-
tum J . There are no other types of black holes with more properties. The most
simple type with no electrical charge and no angular momentum is known as a
static or Schwarzschild-type black holes.

Early investigations of the optical appearance of a black hole [5] were quite
abstract. The evolution of computer graphics allows pedagogically superior pre-
sentations, like the surface of a neutron star [6]. Especially the astrophysical
group in Tuebingen, Germany has a long history [7,8,9] in using ray-tracing to
visualize curved spacetimes. Nowadays numerous implementations for the ray-
tracing of Schwarzschild-type black holes exists, a good review can be found
in [10]. Most approaches simulate a black hole in an astrophysical environment.
In contrast, [11] simulated a black hole in an intuitively comprehensibly envi-
ronment. Recently, [12] created a plugin using a fast hyperbolic approximation
similar to [13] for use in the framework of the commercial software environment
Maya.

Electrically charged black holes are unlikely to exist, but provide a simple
testbed for rotating black holes. They where extensively discussed by [14] and
recently [15] implemented the real-time raytracer BHFS (“Black Hole Flight Sim-
ulator”) to allow interactive photo-realistic exploration of their complex topology
embracing multiple parallel universes.

Rotating black holes are significantly more complex; their optical effects have
been investigated by [16]. The raytracing technique is also used beyond computer
graphics for scientific applications, for instance to compute the spectra of accre-
tion disks [17] for astrophysical observations, and [18] coupled a ray-tracing code
for a rotating black hole with a relativistic hydrodynamic code to find quasi-
periodic oscillations in the spectrum. Only recently the visual distortions of a
rotating black hole have been applied to a natural environment [19], which is
didactically superior to reach a larger audience.

2 Physical Background

Curved spacetime is modeled via the mathematical formalism of Riemannian
geometry [20,21]. It employs a metric tensor field to describe the geometrical
properties of space and time. The theory of general relativity [22,23] provides
a differential equation to compute the metric tensor for a spacetime in depen-
dence of distribution of matter and energy. The first solution of the Einstein
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field equations of gravity has been found by Karl Schwarzschild. It describes a
spherically symmetric vacuum spacetime. Using spherical coordinates t, r, ϑ, ϕ,
the metric tensor has the form:

ds2 = (1− 2m

r
)dt2 − 1

1− 2m
r

dr2 − r2dϑ2 − r2 sin2 ϑdϕ2 . (1)

The parameter m in Schwarzschild’s metric corresponds to a mass1 in this space-
time concentrated in a single point at r = 0. As we see immediately, something
weird happens at the location where the radial distance r gets close to 2m: the
temporal metric component gtt becomes zero here, while the radial component
grr becomes infinite. Descriptively this means that

1. time comes to a standstill at r = 2m, i.e. objects appear frozen at this
location,

2. radial distances become infinite at r = 2m, i.e. a rope hanging radially down
would need to be infinitely long to reach downward to r = 2m.

However, nothing particular happens with the angular metric components gϑϑ, gϕϕ

at r = 2m, so the region r = 2m is just a sphere with a finite circumference of
2πr and a surface area of 4πr2. Thus, a disk built around the black hole (imagine
a donut-like space station) with a certain radial coordinate extension dr will have

an extremely large radial physical extension ds =
√

1/(1− 2m
r ) dr, approaching

infinity towards r = 2m, whereas its circumference changes as usually known
in flat space just linearly with r. By this depiction we see that the physically
measurable relationship between radius and circumference is no longer 2π as
in Euclidean space, but something else (approaching infinity), reflecting a cru-
cial difference of curved space. At this point we will not discuss what happens
when r < 2m when the radial metric component becomes negative, that will be
addressed elsewhere.

2.1 Photo-realistic Visualization

To achieve a fully covariant visualization of a curved space, we need to consider
what an observer actually could measure, in contrast to the appearance of various
quantities in a random coordinate system. It is self-evident to pose the question
what an observer actually would see in a curved spacetime. Tackling this task
requires to trace the path of light rays in a curved spacetime and to model its
interaction with test objects. Such test objects are essential since a pure vacuum
would otherwise not contain any visible light at all; on the other hand, we need
to model these test objects in an unphysical manner as massless such that we
can keep the simple Schwarzschild solution.

1 using geometrical units, i.e. m = GM/c2 with c the speed of light, G the gravitational
constant and M the mass in usual units. Any mass can be expressed as a geometrical
distance by virtue of G and c.
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The path of light in a curved spacetime is a lightlike curve connecting two
points in by minimal or maximal length. Such a curve q(s) is called a lightlike
geodesic and is determined by the geodesic equation

d2qλ

ds2
+ Γλ

µν

dqµ

ds

dqν

ds
= 0 (2)

where Γλ
µν , the so-called Christoffel symbols, are an abbreviation for an expres-

sion formed from the metric tensor and its first partial derivatives:

Γλ
µν :=

1
2
gλα

(
d gµα

dxν
+

d gνα

dxµ
− d gµν

dxα

)
. (3)

Investigation of the solutions of the geodesic equation eq. (2) shows that
light is attracted by black holes similar to planets and comets traversing in
the solar system. This deflection of light is two times as large as predicted by
Newtonian theory. Its observational verification during a sun eclipse lead to the
break through of general relativity.

3 Results

We model a virtual scene similar to that one in [11]. The objects contained
within the scene mainly serve as recognizable orientation points. To introduce
a notion of time, a light source with periodic modulation is added. The light
source blinks in an intense red flash which illuminates the environment as well.

Fig. 1. The virtual scene used for inspecting the curved spacetime. The icosae-
dron placed on the desk periodically blinks in intense red light.

3.1 Light Wavefronts

Even in the context of special relativity, the effect of the finite speed of light on
the appearance of fast moving objects had not been considered until 1959 and led
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to the discussion whether the Lorentz contraction, though definitely measurable,
is observable at all [24].

To explore such visual consequences, we model the finite speed of light also
in our rendering software. This violates many assumptions which are built into
common rendering algorithms. Only few such implementations exist, but some
experiments [25] even modeled the decreased speed of light in refractive media.
Here, we concentrate on the effects of indirect illumination, to extend what has
been modeled also by [26]. When light has an infinite speed we see things in

Fig. 2. Simulating a low, finite speed of light, we see the blinking light source
casting many visible wavefronts.

the present tense - meaning that we see what is happening at the time that it
happens no matter how far away the event occurred. But considering a finite
speed of light we are always looking back into the past – all light must travel
a distance to get to our eye, requiring time. This results in prominently visible
consequences: if there are multiple paths that the light can travel to get to our
eye, we see each such path referring to a different instance in time at their
origin. In Fig. 2 obviously the shortest path from the light emitting object to
the observer is a straight line. Thus we first see the object lighting up in red,
while the floor still remains in darkness. Shortly later, when the emitter itself has
already faded, a front of illumination still wanders along the floor. This “wave
front” is caused by the diffuse reflection of light, which we see with increasing
time delay. This is in contrast to the case of infinite speed of light, where a flash
illuminates the entire scene at once.

The more we decrease the speed of light, the more numerous and the sharper
the wave fronts become. In this scenario, light indeed appears like a wave, like
ripples in water after a stone has been thrown in. There the waves of a wa-
ter surface propagate concentric around the point of origin, i.e. independent of
the observer. However, light waves are concentric around the point of specular
reflection - and thus dependent on the observer’s location.
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Fig. 3. Introducing general relativistic curvature of space into the scene, as if the
white ball in the center corresponds to the surface of a black hole. Gravitational
redshift has been intentionally ignored in this rendering.

3.2 Gravitational Lensing

“Gravitational lensing” is caused by the gravitative attraction of light and actu-
ally observable in nature. It is helpful to retrieve information about astrophysical
objects and the universe itself. In the scene depicted in Fig. 3 we observe a black
hole with a diameter of 0.5m from a distance of 25m; such a black hole corre-
sponds to the mass of the planet Saturn. When multiple astrophysical objects
are observed with identical surface intensity and color, this is strong evidence
for gravitational lensing of a single source. We see the same effect in our virtual
scene with the red light source, which appears twice. Both images experience
different magnifications, similar to a remote galaxy as lensed and eventually
becoming visible due to lensing by a massive foreground object (e.g. [27]).

A consequence of the light attraction is that the entire surface of the black
hole is visible from any point of view. It is impossible to “hide” behind a black
hole [28]. Strictly speaking, this would also affect the illumination of the scene,
but we intentionally ignore this effect here.

3.3 Bending of Light

Curved spacetime not only allows us to see a certain object multiple times,
but also to see it from different perspectives. In the case of the desk that our
ikosaedron is resting on, the primary image (Fig. 4, right) displays the side view,
while the secondary image shows the upper surface (Fig. 4, left). Note that a fully
three-dimensional scene needs to be modeled for this effect to become visible -
the different perspectives could not be achieved by applying a 2D filter like a
“photoshop plugin”. to a background photograph. Note that the images in Fig. 4
are not to scale. Actually, the secondary image is much smaller than the primary
one (see Fig. 3 for a direct comparison). Using our intuition from flat space, this
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Fig. 4. The primary and secondary image of the light source on the desk; we see
the desk from another perspective.

can be interpreted as the secondary image being further away than the primary
one. This intuition is well supported by the finding of the parallax angle is
smaller for the secondary image, as presented in [29]. The ability to employ a
stereographic display fully supports this finding even for viewers without a-priori
knowledge of relativity and curved spacetime.

3.4 Time Delay of Secondary Images

Due to the longer path that the light rays responsible for the secondary image
traveled on, we are effectively looking further back in time than when viewing
the primary image. especially as light travels slower in the vicinity of the black

Fig. 5. Taking into account the finite speed of light, the blinking flash of the
light source becomes first visible on the primary image. The secondary image
does not flash until the primary image becomes dark again.

hole. This is known as the Shapiro effect [30]. It has been observed in nature in
great precision. In our virtual scene, this effect occurs in a delayed blinking of
the secondary image, as depicted by Fig. 5. The flash of the secondary image be-
comes visible at the same time as the brick cylinder in the back ground becomes
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enlightened. This indicates that the visual (proper) distance of the secondary
image is equal to the proper distance of the brick cylinder, i.e. it looks further
away than the primary image. This impression is successfully communicated by
stereographic viewing of the same scene [29].

3.5 Gravitational Redshift

The metric component gtt causes time to run slower in the vicinity of a large
mass, causing redshift of light leaving a gravitational field. The effect was mea-
sured on earth using high-precision atomic clocks and must be taken into account
for the global positioning system to work in the desired precision.

While we could employ some color shift model such as the “dominant wave-
length model” used by [31] for visualization, we found an alternative. We note
that every motion slows down, including the apparent motion of light wave fronts.
It takes infinite time for a photon to reach an outside observer from the event
horizon, thus any light observed originating there stems from the far past. Wave
fronts of light pulses will thus “pile up” at the horizon: a (static) membrane
enveloping the black hole just outside the horizon will reflect pulses in the past
as well as recent ones, as depicted in Fig. 6.

Fig. 6. Membrane radii of r = 0.55, 0.505 for an event horizon at r = 0.5. The
time dilation allows us to see echoes of light pulses from far in the past.

At some times we see the surface illuminated, at others it appears dark,
leading to a zebra-like pattern that moves over the surfaces. New light pulses
appear on one pole of the surface and disappear on the anti-pole. This would
also be the case if the membrane was homogeneously emitting pulsating light
itself; with incident light this effect doubles. We see rings of wavefronts traveling
over the membrane, each front corresponding to a pulse of the light source in the
past. The rings become more numerous and sharper the closer the membrane is
to the actual event horizon at r = 2m. If it were at the horizon itself, we would
see an infinitely dense echo of all light pulses that have ever been emitted by the
light source. An alternative, but equivalent interpretation of the visual effect is
that the membrane is infinitely far away from the observer.
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4 Conclusion

We have demonstrated how a physically modeled virtual reality can be used to
provide a deeper comprehension of curved space. Various components of a metric
tensor field constituting curved space lead to certain visual effects that represent
these. Fig. 3 and Fig. 4 depict a static scene and can be seen of a visualization of
curved space, or the metric components grr, dΩ only. Fig. 5 and Fig. 6 introduce
a dynamic component and thereby provide a visualization of gtt. In the case of
the Schwarzschild metric, gtt = −1/grr, so the information content is identical.
However, in the case of more complex gravitational fields, especially those of
rotating black holes, we may expect another visual quality.
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