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Abstract. Tensor field visualization aims at the depiction of the full informa-
tion contained in the underlying data set or the extraction and display of specific
features. Here, we focus on the first task and evaluate various methods with re-
gard to their power of providing an intuitive visual representation. Tensor fields
are reviewed in a differential geometric context and we provide a coordinate-free
derivation of various mathematical properties of tensor fields. An overview and clas-
sification of glyph-based methods is given and their usability for time-dependent
tensor fields is discussed. Selected innovative methods are presented in more detail
(tensor cones, tensor glow, tensor splats, tensor schlieren).

1 Introduction

We consider tensor fields which are given either analytically or on a discrete
mesh. For the last kind of data we assume that the we are able to reconstruct
the underlying continuous field by some interpolation method in a reason-
able way. Depicting tensor fields, major problems are the number of degrees
of freedom to be displayed at each point and, for data in more then two di-
mensions, the view occlusion: graphical objects tend to hide each other. The
degrees of freedom have to be mapped to graphical degrees of freedom like
color, transparency, reflectivity, texture patterns and shape.

Encoding all degree of freedom of a tensor field into the parameter space
of just one of these categories is problematic: Ideally we would like to map all
degrees of freedom onto each point in space. Texture patterns and shaped ob-
jects require spatial extent, and color plus transparency encompass essential
four degrees of freedom. The art of tensor field visualization is to find percep-
tually effective combinations of graphical parameters and suitable mappings
to them. To tackle the occlusion problem, one aims to work with sparsely
distributed objects, e.g. lines, and transparency. Tensor field visualization
techniques can thus be differentiated in those computing integral lines or
surfaces, and those which display the field per vertex the entire volume by
drawing tiny objects, so-called “glyphs”. We will discuss the benefits of both
approaches, concentrating on the mathematical aspects of integral manifolds
in the first part, and focusing on rendering glyphs in the second part of the
article.
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Fig. 1. Maelstrom of spacetime around a rotating black hole, visualized via integral
lines (left) and vertex-based glyphs (right).

1.1 Classification of Tensor Fields

At first, we need to determine the symmetry properties of a rank two tensor
field: is it symmetric, like the diffusion tensor field in magneto-resonance
imaging (DT-MRI), or like the metric tensor field in general relativity; is
it antisymmetric or does it contain no symmetries at all, like the Jacobi
matrix of a vector field. Any general tensor field can be decomposed into a
symmetric and an antisymmetric part, so we can defer the visualization of a
generic tensor field into two sub-tasks. In three dimensions, an antisymmetric
tensor field of rank two consists of three independent components and is thus
equivalent (homeomorph) to a vector field.

An important property of a tensor field that needs to be known before
selecting an appropriate visualization method is its definiteness: A multilinear
map g : V × V → R : (x,y) 7→ g(x,y), with V a vector space, is positive
definite if ∀v ∈ V with v 6= 0 : g(v, v) > 0. If g(v, v) ≥ 0, then the g
is called positive semi-definite. This property is equivalent to requiring the
determinant of the tensor field to be positive everywhere.

The number of independent quantities for tensors of rank two is given in
the following table:

dim(M) symmetric antisymmetric general
2 3 1 4
3 6 3 9
4 10 6 16
n n(n + 1)/2 n(n− 1)/2 n2

For positive-definite symmetric three-dimensional tensors of rank two we
may compute linear, planar and spherical shape factors [WPG+97] from
its eigenvalues: cl = (λmax − λmed)/tr(g), cp = 2(λmed − λmin)/tr(g) and
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cs = 3λmin/tr(g), where tr(g) = λmax + λmed + λmin is the trace of the
tensor. The three shape factors obey the relationship cl + cp + cs = 1 and can
thus be interpreted as barycentric coordinates within a triangle, as discussed
later in section 3.1.

2 Visualization via Integral Manifolds

In the following discussion, we provide coordinate-free expressions as far as
possible. The respective mathematical objects are not viewed as set of real-
valued components, but as objects that allow certain operations like elements
of an abstract vector space. This approach is perfectly suitable for an object-
oriented implementation that hides the component-wise appearance of a ten-
sor from the user. In particular, the coordinate-free formulation avoids the
use of operations that are only valid in specific coordinate systems and thus
helps to distinguish features of the tensor field itself from virtual features
that are due to the choice of coordinates. Coordinate expressions, as they are
required to implement actual numerical computations, are shown at the end
of the discussion.

A curve q is a continuous map q : R → M : s 7→ q(s), which provides
a point q(s) ∈ M within a manifold M for a number s ∈ R. s is called the
curve parameter. The set of all points of a curve within a manifold is a line.
A certain line can be described by an infinite number of curves with different
parameterizations.

2.1 Integral Lines in Vector Fields

An integral line q ⊂ M on a vector field v ∈ T (M) within a spacetime
manifold M with starting event q0 ∈ M (an “event” is a spatial location
together with a specific time) is defined via

q̇ ≡ d

ds
q(s) = v(q(s)) with q(0) = q0 . (1)

Integral lines are also called trajectories, tangent curves1 or path lines. They
describe the path of a point-like particle in the flow of a vector field. In
coordinates, q describes spatial and temporal information; usually only three-
dimensional, but possibly time-dependent (non-stationary) vector fields are
considered. Then we may use the time coordinate as the curve parameter and
equation (1) reduces to three equations

q̇a(s) = va(qt(s), q1(s), q2(s), q3(s)) , qt(s) = s (2)
1 Usually visualization literature does not distinguish among the terms “lines”, as

set of points (one-dimensional subspace) q ⊂ M , and “curves”, i.e. parameterized
one-dimensional maps q(s) : R → M . What is really meant here for visualization
purposes is a line, while a curve is used for the computation and numerical
representation of a line.
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whereby a = 1, 2, 3 describes spatial coordinates. However, when solving (2)
by numerical methods, it is preferable to go back to (1) to get an autonomous
system of ordinary differential equations which can be solved using Runge-
Kutta methods [DB02].

In the case of a stationary vector field or when investigating a vector field
at some instance of time, we may drop the time dependency and by solving

q̇a(s) = va(qt(s), q1(s), q2(s), q3(s)) , qt(s) = qt(0)

we get lines known as field lines or stream lines. They correspond to the flow
direction of many particles which are spread around in the volume of the
vector field. Path lines and stream lines are both one-dimensional manifolds;
they can’t cross each other, since at each point their direction is uniquely
determined by the given vector field. A stream line is a static object, all of
its points belong to the same time slice, whereas a path line is constructed
by points from different time instances. A path line can be considered as the
projection of a stream line within an time-dependent n-dimensional manifold
onto an n − 1 dimensional spatial submanifold (a path line is the three-
dimensional “image” of a four-dimensional stream line) – this projection may
intersect itself.

Beside the inspection of lines that start from a single event q0 we can
also study the behavior of a bundle of lines that start from a set of events,
e.g. some “initial seed” line q0(τ) : I → M with I ⊂ R. The integral surface
S ⊂ M within a vector field v ∈ T (M) with initial seed line q0 is then
constructed from all integral lines that pass through an event on this initial
seed line:

S = {q : R→M, q̇(s) = v(q(s)), q(0) = q0(τ)} .

It contains a natural parametrization S(s, τ) by the initial seed parameter
τ and the integration length s. The intersection of an 2-dimensional surface
within a n-dimensional manifold with a n − 1 sub-manifold does not neces-
sarily yield a one-dimensional manifold and thus may lead to lines that can
self-intersect.

A commonly used choice is to use a timelike initial seed line q0(τ) =
(τ, q1, q2, q3) with fixed spatial coordinates q1, q2, q3 (we can call such a seed
line a “location”, since it describes a point in space independent of time).
The resulting integral surface will then be spanned by a timelike tangential
vector ∂t and a spacelike tangential vector ∂s. For a fixed time coordinate
t the projection of the integral surface into a time slice dt = 0 reveals a
line, called a “streak line”. It is formed by the location of all particles that
have passed (or will pass) through a specific point q0(t) at some time t. For
stationary vector fields, integral lines will be independent of time, and so
streak lines will coincidence with stream lines.

Another choice is to use a spacelike initial seed line q0(τ) = (q0, q1(τ), q2(τ),
q3(τ)). The image of the seed line under evolution, the line S(s, τ)|s=const
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is called a “material line” or “time line”. The surface S is called a stream
surface. An improved algorithm for computing a streamsurface based on the
original algorithm by [Hul92] is given in [Sta98] and [GTS04]

Sometimes higher dimensional initial seed data are used, revealing sur-
faces or volumes evolving under the flow map of the underlying vector field.
For instance, evolving a timelike two-dimensional initial seed surface (spa-
tially a line) yields streak surfaces in the spatial projection of the resulting
timelike volume. In general, these spatial projections are not manifolds and
may penetrate itself like streak lines.

2.2 Eigenvector Stream Lines

As the maximal eigenvectors of a tensor G ∈ T ∗
p

2(M) play an important role,
it is a straightforward approach to employ vector field visualization methods
to inspect them. The integration of maximal eigenvectors as stream lines is
the basis of one of the widest known tensor field visualization techniques
called hyperstreamlines [DH93], which extends the vector field technique by
adding an elliptical cross-section encoding the median and minor eigenvalues.
However, treatment of eigenvectors needs to consider two relevant aspects:

• The maximal eigenvector is undefined in isotropic regions. Its direction
is ambiguous and may vary due to slight numerical instabilities.
• The sign of eigenvectors is undefined, since −v is a solution of the eigen-

value equation G ·v = λv as well. We may call a vector which sign is left
open a “pre-vector” (it is not yet a fully determined vector).

The difference among pre-vector and vector fields is important as it is pos-
sible to find a pre-vector field as the tangential vectors of a non-orientable
manifold. For instance, consider a three-dimensional pre-vector field that is
tangential to a Moebius strip in a volume, and getting smoothly zero farther
away from the Moebius strip. Since the Moebius strip is a non-orientable
manifold, so also its associated tangential pre-vector field cannot be oriented
globally to yield a vector field. Thus in general it is not possible to apply
unmodified vector field visualization methods to eigenvectors. Furthermore,
due to the eigenvector ambiguity within isotropic regions, unmodified vec-
tor field visualization find and display features which are not a property of
the data field but stem from the numerical eigenvalue extraction algorithm
(isotropy artifacts). Modified interpolation and/or integration methods are
required for eigenvector fields:

• When interpolating eigenvectors within a cell, all vectors contributing to
the interpolation must be oriented such that they point into the same
half-space, i.e. vi · vj ≥ 0 (“local alignment”).
• Interpolating eigenvectors yields different results than interpolating the

tensor field with computation of the eigenvector at each interpolation
point (spherical interpolation sustaining tensor shape versus linear inter-
polation of components).
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• Stream line integration advances a point q(s) of the stream line q to the
next point q(s + ds) by a small step size ds via

q(s + ds) = q(s) + ds q̇(s) ,

whereby the new tangential direction is the direction of the vector field
v at the point of interest q(s)

q̇(s) = v|q(s) .

Here, v is the solution of the eigenvalue equation Gv = λv at the point
q(s) such that v · q(s) ≥ 0. This last condition of local alignment during
integration is essential and needs to be added to a usual stream line
integration algorithm.
• Local alignment does not cure the problems arising from isotropy arti-

facts. Stream lines of the maximum eigenvector only lead to reasonable
results in regions with one dominant eigenvalue. An alternative, less vul-
nerable integration algorithm is thus to start stream lines in regions with
high linearity and to advance it according to the deviation vector 2 G · q̇:

v = G · q̇ → q(s + ds) = q(s) + ds v . (3)

Integral lines of deviation vector fields are e.g. used [ZP03]. The method
of “tensorlines” [WKL99] combines this method by blending the oriented
maximal eigenvector vmax and the deviation vector with the linearity
shape factor cl at the point q(s + 1):

v = cl vmax + (1− cl) [(1− w) q̇(s) + w G · q̇] .

Hereby w is a user-controlled “stiffness” parameter in the range [0, 1]
which is said to be selected depending on the type of data.
• Both integral lines as solution of Eq. (3) and tensorlines don’t provide an

unique direction at each point in space, thus intersections of lines may
occur - in contrast to non-intersecting stream lines.

Visualization of Eigenvector Stream Lines. Hyperstreamlines[DH93] are a
widely known technique for visualizing eigenvector streamlines. They encode
the median and minimal eigenvectors as elliptical cross-section and the maxi-
mal as color along the streamline. However, they severely suffer under isotropy

2 This operation actually yields a co-vector, not a vector, which in the case of
a non-flat base manifold is not identical. In general, the metric g of the un-
derlying manifold needs to be involved to map the co-vector onto a vector
G·q̇ → ]G (q̇,−) ≡ gµνGνκq̇κ – hereby employing the Einstein sum convention in
the coordinate expression, which is implicit summation over multiply occurring
indices. This operation is also known as the ]-operator or “index raising” musical
isomorphism.
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artifacts and, while they are good for inspecting single lines, they suffer under
view occlusion problems when studying a large data volume. An alternative
approach is to use the technique of illuminated stream line technique [ZSH96]
upon eigenvector fields. As the cross-section is infinitely small here, we may
encode the additional tensor field quantities as transparency and line distri-
bution density. To reduce or even avoid anisotropy artifacts, the transparency
is set proportional to the isotropy, the spherical shape factor cs is appropri-
ate. Consequently, lines isotropic regions of undefined maximal eigenvector
become invisible, although a stream line of the maximal eigenvector field con-
tinues there technically. The seed points for the stream line integration, which
determines the density and number of stream lines, are set dominantly in re-
gions where one eigenvector is dominant (density chosen to be proportional
to the linear shape factor cl), because only then there is a unique direction.
As a result, stream lines start in highly linear regions, may traverse through
planar regions but are less dense there and vanish in isotropic parts of the
volume data set.

Fig. 2. Front, side and top view of stream lines along the maximum eigenvector in
linear regions of the human brain data set.

This approach is very suitable for full three-dimensional visualization of a
data set as in Fig. 2. Due to the three-dimensional nature of stream lines, it
is not even applicable to two-dimensional slices. The ISL/transparency/line
density based eigenvector stream line technique is able to display practically
all of the tensor field features, including isotropic and linear regions in a
clear way (see Fig. 3). However, it is not suitable for point-wise detailed
inspection of a data set. Also, planar regions are not visualized correctly,
since eigenvector stream lines visually suggest only one direction there.

2.3 Geodesics

A positive definite tensor field of rank two can be interpreted as a metric
tensor field and used to measure distances among points in space and time.
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Fig. 3. Stream lines along the maximum eigenvector in linear regions in a portion
of the Human Brain.

An extremal line is the shortest or longest (i.e. most extreme) connection
between two points. It is determined by the metric. A curve q(s) is the most
extreme connection between two points A = q(s1) and B = q(s2) iff

s2∫
s1

√
|g(q̇(s), q̇(s))| ds = minimum .

We may employ the Lagrange formalism to derive a differential equation for
the curve q(s). If we take the square of the length of the tangential vectors
as Lagrange function,

L(qk(s), q̇k(s)) = g(q̇(s), q̇(s)) = q̇µq̇νgµν (4)

then the parameterization of the curve becomes fixed and the solutions are
extremal lines parameterized by their affine parameters (proof not shown
here). These curves are called geodesics. By inserting (4) into the well-known
Euler-Lagrange-equations

∂L

∂qk
− d

ds

∂L

∂q̇k
= 0 (5)

and a little algebra we arrive at the coordinate expression for the geodesic
equation

q̈λ + Γλ
µν q̇µq̇ν = 0 , (6)

whereby Γλ
µν are the so-called Christoffel symbols. They abbreviate an ex-

pression involving only the metric and its first partial derivatives:

Γλ
µν :=

1
2
gλα (gµα,ν +gνα,µ−gµν ,α ) . (7)

Here, the comma denotes the partial derivative by a coordinate function,
i.e. gµα,ν ≡ ∂gµα/∂xν . The partial derivative of a tensor gµα,ν (or even of a
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vector vµ,ν) does not yield a tensor again; it may be zero in all components
in one coordinate system while non-zero in another ones. Consequently, the
Christoffel symbols Γλ

µν do not form a tensor, too. The Christoffel symbols
can be used to define the covariant derivative of a tensor field that does not
depend on the choice of coordinates. This covariant derivative is denoted by
a semicolon, e.g. vµ

;ν . Its coordinate expression for a vector field is given by

vµ
;ν = vµ, ν + Γµ

λνvλ .

The directional derivative of a vector field is just the linear combination of
covariant derivatives and the components of the direction of interest. This
operation is written as ∇uv:

∇uv = vµ
;νuν∂µ .

The covariant derivative has the interesting property that it does not com-
mute in general, whereas the partial derivative always commutes:

vµ
,ν,λ = vµ

,λ,ν but not vµ
;ν;λ = vµ

;λ;ν .

As the covariant derivative yields a tensor, so does the difference of two
covariant derivatives. This tensor is the Riemannian curvature tensor:

Kµ
νλσvσ = vµ

;ν;λ − vµ
;λ;ν

It is used in general relativity to form the left-hand side of the Einstein field
equations of the gravitational field (via contraction). The Riemann tensor
is a map K : V × V × V → V and is defined in coordinate free notation
with u, v, w ∈ V based on the directional derivative ∇ and the commutator
[u, v] = u(v)− v(u):

K(u, v)w := ∇u∇vw −∇v∇uw −∇[u,v]w . (8)

The Riemann tensor only depends on the metric, its first and second partial
derivatives. The first partial derivatives may vanish in a certain coordinate
system, but the second ones do not. Thus, the Riemann tensor allows an
coordinate-independent classification of the underlying metric tensor fields.
If all of its components vanish in one coordinate system, then the metric
space associated with the tensor field is said to be flat.

2.4 Geodesic Deviation

The difference among close geodesics as depicted by the cross-section of a
geodesic bundle depends on differences of the Christoffel symbols and thus
directly visualizes the Riemann tensor. We show a short proof based com-
pletely on coordinate free notation. Let Φ(s, t) : R2 → M denote a two-
dimensional family of geodesics such that for fixed parameter t the curves
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γ(s) := Φ(s, t = const.) are geodesics. Let δ := d
dtΦ(s, t) ∈ T (M) denote

the deviation vector of points on the geodesics with same parameter s ∈ R,
also known as the Jacobi field of the geodesics [O’N83]. Here the dot denotes
the derivative by the geodesic parameter s, which is given by the directional
derivative along the geodesic:

δ̇ :=
d

ds
δ ≡ ∇γ̇δ

We may also describe the deviation by an vector field δ ∈ T (M) that is
transported along the geodesic bundle, i.e. its evolution is described by the
flow map along the geodesics. This requires its Lie derivative Lγ̇δ along the
geodesics to vanish (see [Ben04] for illustration):

0 = Lγ̇δ ≡ [γ̇, δ] = γ̇δ − δγ̇ = ∇γ̇δ −∇δγ̇ (9)

and we see that
∇γ̇δ = −∇δγ̇ .

If we compute the second derivative by the affine parameter we get

δ̈ :=
d2

ds2
δ ≡ ∇γ̇∇γ̇δ = −∇γ̇∇δγ̇

Recalling definition Eq. (8) of the Riemann tensor K(u, v)w and inserting
u = δ, w = v = γ̇ yields:

K(δ, γ̇)γ̇ = ∇δ∇γ̇ γ̇ −∇γ̇∇δγ̇ −∇[δ,γ̇]γ̇ .

∇γ̇ γ̇ = 0 is just the geodesic equation and from (9) we know that [δ, γ̇] = 0.
Thus we see that the second derivative of the deviation vector is linearly
related to the Riemann curvature tensor:

δ̈ = K(δ, γ̇)γ̇

The evolution of the deviation vector in a chart is given by the coordinate
expression

δ̈µ∂µ = Kµ
αβνδαγ̇β γ̇ν ∂µ .

In flat space K = 0 in any coordinate system and no focusing happens. The
deviation vector then describes just a linear expansion of a geodesic bundle
like a cone, depending on its initial cross-section δ and opening angle δ̇. The
influence of curved space on a geodesic bundle, e.g. as depicted in Fig. 4, is
also known as “Ricci focusing” and plays a central role in gravitational lens
theory. An extensive discussion of theory and application can be found in
Ehlers et.al. [SSE94,SEF99].
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Fig. 4. Particle Geodesics in the vicinity of a rotating black hole. The congruence
of the geodesics is a direct visualization of the Riemann tensor, which is a central
component of the Einstein equations describing the gravitational field in general
relativity. The change of proper distances among geodesic paths thus indicates that
the spacetime is non-Euclidean, i.e. it has a non-vanishing Riemann tensor due to
some mass distribution.

2.5 Projection of Metric Ellipsoids

For rendering the quadric surface of a tensor, it is sufficient to just draw
an two-dimensional ellipse instead of a truly three-dimensional object that
is projected by the 3D graphics engine. For drawing such an ellipsoid, we
can draw a rectangle with an arbitrary texture on it. This rectangle needs
to be oriented perpendicular to the view direction and transformed by a
transformation matrix according to the projection of the tensor field in the
view plane.

Let z be the view direction and x,y be two orthonormal vectors describ-
ing the view plane. A point ε on the view plane can be computed from two
parameters (a, b) via ε = ax + by. We get the projected ellipsoid by consid-
ering a ray p = ε + λz that is orthogonal to the view plane (for orthogonal
projection, we could model rays for perspective projection as well). Points on
the ellipsoid obey g(p,p) = 1, which yields a quadratic equation in the ray
parameter λ

1 = g(ε + λz, ε + λz) ≡ g(ε, ε) + 2λg(ε,z) + λ2g(z,z) (10)

For the projection of the ellipsoid on the view plane we are interested in the
set of parameters (a, b) where the ray is tangential to the ellipsoid, i.e. where
the discriminant of (10) vanishes:

g(ε,z)2

g(z,z)2
− g(ε, ε)− 1

g(z,z)
= 0 ≡ g(ε,z)2 − g(ε, ε)g(z,z) + g(z,z). (11)
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Substituting ε = ax+ by into Eq. (11) yields a quadratic expression in (a, b):

a2
[
g(x,z)2 − g(x,x)g(z,z)

]
+ 2ab

[
g(x,z)g(y,z)− g(x,y)g(z,z)

]
+ b2

[
g(y,z)2 − g(y,y)g(z,z)

]
+ g(z,z) = 0 (12)

The coefficients in (12) for a2, 2ab and b2 are the components of a bilinear
form describing the shadow of the metric ellipsoid in the coordinates (a, b).
Note that in this derivation we never used coordinates on the 3-vectors, i.e.
this derivation was completely coordinate-free. We may also write (12) as

(
a b

)
g(z,z)

=:π(g)︷ ︸︸ ︷(
g(x,x) g(x,y)

g(y,y)

)
−

(
g(x,z)2 g(x,z)g(y,z)

g(y,z)2

)
︸ ︷︷ ︸

=:σ(g)

(
a
b

)
= g(z,z)

(13)
whereby π(g) is the the intersection of the ellipsoid with the view plane g(ε, ε)
and σ(g) is the “shadow ellipsoid”. With (v, w) the eigenvectors of this 2× 2
metric and (λ, µ) the corresponding eigenvalues, i.e.

σg · v = λv σg · w = µw ,

the orientation of the resulting projected ellipsoid in 3D is given by evaluating
the eigenvectors as linear combination of the basis {x,y}:

p1 = vx/
√

λ x + vx/
√

λ y (14)
p2 = wx/

√
µ x + wx/

√
µ y (15)

The two three-dimensional vectors p1,p2 are orthonormal with respect to the
metric tensor g (i.e. g(pi,pj) = δij) and are completely contained in the view
plane x,y.

Since the eigenvalue equation of σ(g) is just quadratic, it can be solved
faster and more precisely than the eigenvalue equation of the full 3×3 tensor
matrix. From the visualization side, the advantage of this method is that we
can use an arbitrary image as texture on the distorted rectangle.

2.6 Tensor Fields for Analyzing Vector Fields

If the underlying manifold is a vector space, then we may consider a vector
field v as displacement field, i.e. to compute an “elastic distortion” d by
remapping each point onto another point as given by the vector field:

d : Rn → Rn (16)
p 7→ p + v(p) (17)
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A set of equidistant points will no longer remain equidistant under this map-
ping. If we assign the new point location with the same coordinates as the
original points, we need to replace the flat metric with a non-euclidean metric
to correctly describe the distances to neighboring points. This non-flat metric
is directly related to the underlying displacement vector field. Visualization
of this distortion tensor field is an alternative to displaying the vector field
or the distorted point locations.

Derivation of the distortion tensor field. Let x0, x1 be two points with unit
distance, i.e. ||x1 − x0|| = 1. These points are mapped to x0 + v(x0) and
x1 + v(x1). The difference vector between these mapped points is then

∆l := (x1 +v(x1))−(x0 +v(x0)) ≡ (x1−x0)+(v(x1)−v(x0)) =: ∆x+∆v .

We now are seeking for a metric that fulfills g(∆l, ∆l) = 1, i.e. the metric
tensor field that is induced by the displacement vector field v. By insertion
we find:

g(∆l, ∆l) = g(∆x,∆x) + g(∆x,∆v) + g(∆v,∆x) + g(∆v,∆v)

In a coordinate system, the difference vector ∆l is given component-wise as
∆li = ∆xi + ∆vi. To derive a metric tensor field in the tangential space, we
write the infinitesimal difference vector as

d∆l = ∆li,j dxj∂i = (δi
j + vi,j )dxj∂i

Insertion yields

gij = δij + vi,j +vj ,i +
∑

k

vk,i vk,j . (18)

This tensor becomes the Euclidean metric for a constant vector field. The
component vi,j +vj ,i is also known in continuum mechanics as the deforma-
tion or strain tensor. Based on this relationship, we may now use tensor field
visualization methods to inspect arbitrary vector fields.

3 Vertex-Based Visualization Methods

3.1 Legend for Tensor Glyphs

The following sections contain a collection of various tensor field visualiza-
tion methods using glyphs (icons) as the basic primitive. For evaluation and
comparison of these methods, a “legend” is helpful that displays the extreme
cases of tensor shape factors. For such a legend we arrange the tensors within
a triangle and construct the tensor shape from its barycentric coordinates:

cs = 1
cl=0↗↙ ↘↖cp=0

cp = 1 cs=0←→ cl = 1
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The appropriate tensor can be constructed as a diagonal tensor with eigen-
values computed from the shape factors. A possible way is to impose constant
trace of the tensor along the edges of the tensor legend triangle, i.e. when
writing a tensor as an eigenvalue triple G = (cs/3, cs/3+cp/2, cs/3+cp/2+cl)
with the maximum eigenvector direction left open for visual adjustments:

1
3 (1, 1, 1)

cl=0↗↙ ↘↖cp=0

1
2 (1, 1, 0) cs=0←→ (1, 0, 0)

However, this choice lead to unpleasant results as in Fig. 5, right, because the
according quadric surfaces degenerate at the cs = 0 line: the maximum half
axis of the tensor ellipsoid is the inverse square root of the minimum eigen
value. The minimum eigenvalue is zero at the cs = 0 line, thus the tensor
ellipsoid becomes infinitely long in the direction of the minimum eigenvec-
tor (and at the same time becoming infinitely thin, therefore sustaining the
trace).

A better choice is to normalize the tensors by sustaining the minimum
eigenvalue. This provides a more intuitive visual clue of “a sphere flattening
to a disc shrinking to a needle”, as in Fig. 5, left. Such a tensor shape is
constructed from the eigenvalue triple as

(λmax, λmed, λmin) =
(

3cl

cs
+

3cp

2cs
+ 1,

3cp

2cs
+ 1, 1

)
λmin

whereby we may choose the minimum eigenvalue (the maximum diameter
of the tensor ellipsoid) as a free parameter. For λmin = 1 this tensor shape
corresponds to a legend triangle of:

1
3 (1, 1, 1)

cl=0↗↙ ↘↖cp=0

1
2 (∞,∞, 1) cs=0←→ (∞, 1, 1)

We see that the minimum eigenvalue is kept constant by the cost of other
eigenvalues becoming infinite. Accordingly the trace of the tensor is not con-
stant along the triangle edges. Instead, it is inversely proportional to the
sphericity via tr(G) = 3λmin/cs, thus becoming infinite on the cs = 0 edge
as well. Nevertheless keeping λmin =const. along the triangle edges is a better
choice than keeping tr(G) =const. . For numerical purposes, the cs = 0 line
should be avoided by a small ε > 0, otherwise glyphs like a quadric surface
would become infinitely thin, ergo invisible and thus useless. Extending the
tensor legend to include negative eigenvalues has not yet been investigated
and is an open issue.

3.2 Selected Methods

Here, we review six glyph-based methods that provide alternatives to quadric
surfaces (“metric ellipsoids”).
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Fig. 5. Legend with constant minimal eigenvalue (left) and constant trace (right).

Reynold Glyphs. Reynold glyphs [MSM95] are an inverse mapping of
the metric ellipsoid, mapping each direction v to v ·

√
G(v, v) instead of

v/
√

G(v, v) as with the quadric surface.

Haber Glyphs. Haber [Hab90] used a disc and a rod instead of an ellipsoid
to encode the eigenvalues of a tensor at each point. This glyph is useful for
depicting anisotropy more easily than ellipsoids, but is also vulnerable to
isotropy artifacts.

Tensor Glow. Here, the idea is to avoid rendering three-dimensional ob-
jects as a tensor glyph, but instead to only compute the projection of the
tensor ellipsoid on the view plane on the fly and depending on the view
direction [Ben04]. The actual graphics primitive is just a rectangle which
is stretched and oriented according to the visible projection as derived in
Eq. (14) and Eq. (15). This rectangle can be rendered very fast and equipped
with an arbitrary, even animated texture. It is thus very suitable to provide
the impression of a glowing flash of light dissipating into space, which is an
intuitive rendering of a metric tensor field.

Tensor Cones. Inspired by the frequently used light cones in general rel-
ativity, tensor cones [Ben04] are constructed from little cones with elliptical
cross-sections. An arbitrary input vector field has to be provided which forms
the original axis of these cones. Their extruded cross-section is computed from
the 2x2 tensor in the projection orthogonal to the original axis. Finally, the
three left over components of the tensor field along the vector field are used
to tilt the cones according to the deviation vector. The tensor cones incor-
porate the full tensor information content, but depend on a certain input
vector field. This allows to display a vector field in addition to a tensor field
simultaneously.

Tensor Schlieren. This is experimental technique [Ben04] where the de-
viation of the view direction by the tensor field is visualized by decreased
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transparency at locations of large deviations. The visual appearance is like
a fuzzy geometry that changes with view position or rotation of the data
volume. This technique is not limited to positive definite tensor fields.

Tensor Splats. This technique has been extensively described in [BH04b]
and [BH04a]. The basic idea is to replace the complex geometries of glyphs
by transparent splats equipped with a texture-like pattern that incorporates
the same information content. As a result, tensor splats are able to visualize
entire three-dimensional volumes of a tensor field and intuitively provide a
notion of the tensor field’s important properties.

3.3 Comparison of Glyph-Based Visualization Techniques

Application to Brain Data. Diffusion weighted magnetic resonance imag-
ing (DW MRI) is a technique that measures the diffusion properties of water
molecules in tissues [ZMB+03].With the availability of such measured tensor
field data for medical purposes, the interest of visualizing such data has grown
rapidly in the last years [ZDD+01,ZDK+01,TRW+02,HTR+02,TWD+01].
The inspection of diffusion tensor data is relevant for the segmentation and
classification of MRI data to detect the white matter tracts that form the
“wiring” of the human brain [KWH00]. We will compare various methods
upon an example data set using exactly the same view parameters.

As first approach, we may employ metric ellipsoids with colors indicat-
ing the trace of the tensor. We find that this representation clearly depicts
the properties of the tensors at each point, Fig. 6, but we need to enlarge
the image such that each ellipsoids becomes visible on their own. When in-
specting the entire image as an overview, hardly anything can be seen at
all because the structures of the ellipsoids fall below the image resolution.
Equivalently we could use volume rendering of the trace as a scalar field.
But even when zoomed onto an interesting regions, the ellipsoids are hard to
interpret because we only see their projected shape.

Employing the method of tensor glow in Fig. 7 reduces the visual clutter.
In the variant used here, the projected glow pattern is not normalized, but its
transparency is proportional to the trace of the tensor field. Other variants
are possible, too. E.g. using an isotropy indicator were a reasonable approach.
Employing these settings upon the human brain tensor field enhances regions
of high trace. This is the region where water may flow rapidly. Such areas
are depicted clearly, in an overview as well as in an enlargement. We also
get an glimpse of the orientation of the flow, but it is not too prominent as
the anisotropy is not overwhelmingly large. The tensor glow method is thus
applicable and helps to enhance certain features, but one gets the impression
that it should be possible to do better.

Although specifically developed for relativistic data, using tensor cones
for brain data Fig. 8 resulted in a positive surprise: it displays some global
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structure information more clearly than both metric ellipsoids and tensor
glow. This is due to the larger sensitivity of the appearance of tensor cones
to variations of the tensor field. As a consequence, we get a good overview of
all structures contained in the data set. However, the interpretation is difficult
because we have the vector field probe as an arbitrary input parameter. The
structure of this user-chosen vector field is clearly recognizable, so we can
study the tensor field properties by visual inspection, but it still requires
some mental effort.

Haber glyphs have some history in computation fluid dynamics. They are
very sensitive to anisotropy and are thus able to enhance global structures in
an overview similar to the tensor cones, but without dependence on an user-
chosen input vector field. The enlarged view as in Fig. 9 also gives an hint of
some large structures that incorporate an flow. However, to really recognize
the details, we require an extreme enlargement such that all glyphs become
resolved. An drawback of Haber glyphs are their anisotropy artifacts, as the
glyphs are randomly oriented in isotropic areas.

In contrast to tensor cones and Haber glyphs, the technique of tensor
schlieren uses transparency as a fundamental part of the visualization tech-
nique. Thus, it is more suitable for large-scale overviews. However, trans-
parency is not an invariant quantity here, but depends on the view direc-
tion, as the purpose of tensor schlieren is to enhance regions where the
maximal eigenvector is perpendicular to the view direction. Tensor schlieren
are thus especially suitable for an interactive environment than for static,
two-dimensional images. However, even for static images it yields the best
overview , Fig. 10, of the brain visualizations discussed so far: it reduces vi-
sual clutter by rendering large regions transparent (those where the maximal
eigenvector is parallel to the view direction), while strongly displaying the
orientation of the minor eigenvector in other regions. We thus get a good
structural overview plus directional information in each area.

While tensor schlieren produces view-dependent images encoding the ori-
entation of the tensor field’s eigenvectors by intensity, the technique of tensor
splats [BH04b] uses colors for doing so and enhances the differences among the
median and minor eigenvector by employing an additional one-dimensional
high-frequency texturing. Transparency is used to encode the isotropy, i.e.
isotropic regions are visually removed from the image. The result Fig. 11 is
a strong enhancement for all anisotropic features with clear depiction of dif-
ference among minor and median eigenvectors as well. The tensor splat tech-
nique intentionally displays various features redundantly in different manners
to compensate the reduction of visual information by projection of the glyph
geometry onto the two-dimensional view plane. E.g. green indicates a linear
region independent from its orientation and is thus clearly distinguishable
from a red disk seen from aside. Tensor splats thus appear to provide the
best view of the discussed methods and are also appropriate for full three-
dimensional volume visualization.
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Visualizing Displacement Vector Fields. The tensor splats visualization
method is appropriate for distortion tensor fields as in Eq. (18) derived from
vector fields because it maps isotropic regions (corresponding to unstretched
grid regions) to transparency.

We discuss the method of tensor splats on a data set stemming from
elastic registration of image data. It describes the deviations of a individual
bee brain from a standardized average bee brain.

Fig. 12, left, displays the resulting non-uniform grid. Fig. 12, right, is over-
laid with tensor splats of the induced metric tensor field. Tensor splats are
highly sensitive to anisotropy and display even small deformations. Isotropic
regions correspond to areas where the grid is constantly shifted and are dis-
played transparently. Note that the tensor field display reveals full three-
dimensional information of the grid distortion, whereas the grid view only
provides a two-dimensional slice, so some tensor splats are visible also in
regions with apparently no grid distortion.

While we can clearly see the connection among grid compression and
tensor field in Fig. 13, we also find some visual ambiguities in the shape of
the tensor splats within the left image of Fig. 13: The shape of the green
splats in the upper left area is just similar to the shape of the red splats in
toward the lower right. However, grid distortion apparently only occurs in
the domain of the red splats. Due to the color coding we know that the green
splats indicate a linear region. Adding the tensor texturing – right image of
Fig. 13 – also reveals the direction of the linearity: it is perpendicular to the
projected major axis and thus indicates that the linearity actually indicates
grid stretching mostly perpendicular to the view plane. This interpretation
is confirmed by a 3D zoom onto the region of interest as in Fig. 14.

4 Summary

Table 1 compares various tensor field visualization methods. The table is
ordered according to the tensor field quantities which are used for the visual-
ization. It is not possible to provide an overall evaluation for these methods
and to determine the “best” visualization method – each method has advan-
tages that might cause it to be superior to others in special cases. E.g. tensor
ellipsoids are straightforward to understand, but suffer from the problem of
visual clutter. Tensor splats clearly display relevant features of a tensor field
even in 3D volume, but require some experience for understanding the visual
effects – as with most tensor field visualization methods.

Nevertheless some criteria might help to select an appropriate method for
a particular case:

• Number of quantities: Does the method make use of the full information
content of the tensor field or does it work by reduction to fewer quantities?
Often methods displaying a reduced set include parameters that allow to
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browse other quantities as well, such that multiple images are required
to get a complete impression of the tensor field.
• Robustness against visual clutter: Is a method suitable for three-dimensional

data volumes or is it limited to two-dimensional slices only?
• Isotropy artifacts: Visualization methods based on eigenvectors have to

address/handle ambiguities in isotropic regions.
• Limitation to positive definite tensors: Can the method handle tensor

fields with negative or zero determinant? Tensor fields like in DT-MRI
or Riemannian metric tensors are always positive definite, such that the
corresponding quadric surface is an ellipsoid. The stress tensor in CFD or
the extrinsic curvature tensor in general relativity may contain negative
determinants as well.
• Limitation to symmetric tensors: Can the method display asymmetric

tensor fields?
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Fig. 6. Metric ellipsoids applied to a slice of the human brain.

Fig. 7. Tensor glow technique applied to a slice of the human brain.

Fig. 8. Tensor cones applied to a slice of the human brain.



Fig. 9. Haber glyphs applied to a slice of a human brain.

Fig. 10. Tensor schlieren applied to a slice of a human brain.

Fig. 11. Tensor splats applied to a slice of a human brain.



Fig. 12. Distortion of a uniform grid by a displacement vector field (left) and
visualization of the induced metric tensor field (right).

Fig. 13. Detail of the distortion tensor field.

Fig. 14. 3D zoom onto the region of high linearity in Fig. 13, revealing high grid
stretching perpendicular to the selected grid plane.


