
From Formula to File

Coupling Complementary Generic Scientific Software Components

Werner Benger
Center for Computation &

Technology
300 Frey CSC

LA70803, Baton Rouge, USA

werner@cct.lsu.edu

René Heinzl
Institute for Microelectronics
Gusshaussstrasse 27/E360

A-1040 Wien, Austria
heinzl@iue.tuwien.ac.at

Georg Ritter
Institute for Astro- and Particle

Physics
Technikerstrasse 25

A-6020 Innsbruck, Austria
georg.ritter@uibk.ac.at

ABSTRACT
Genericity and performance are usually perceived as contra-
dictory directions in software development. The frequently
voiced opinion “special problems require special solutions”
hinders overcoming the fears of abstraction penalties. With
the complexity of state-of-the art problems such isolated ap-
proaches often tend to be dead ends. Generic approaches for
scientific simulation models have become imperative: to im-
prove the accuracy for a specific model we need to interface
alternative implementations of a numerical scheme; to cou-
ple a-priori distinct simulation models in a Grid environment
we need to utilize a common denominator for data exchange;
last but not least for visualization we need to cover a broad
range of input data stemming from diverse sources. In this
article we present a novel approach to cover a wide range
of application domains based on the mathematical model of
fiber bundles, C++ template meta programming and multi-
paradigm programming within one language. This approach
allows the implementation of mathematical formulae as close
to their abstract notation as possible, while still providing
code performance close to or even exceeding a native FOR-
TRAN reference implementation. The proposed approach
covers finite elements, finite volumes and finite differences
within the same environment, and through a mathemati-
cally founded data structure it canonically maps to a file
format suitable for HPC usage.

Categories and Subject Descriptors
D.2.12 [Software]: Software Engineering—Interoperability ;
D.2.13 [Software]: Software Engineering—Reusable Soft-
ware; E.1 [Data]: Data Structures; J.2 [Computer Ap-
plications]: Physical Sciences and Engineering

Keywords
numerical simulation, data model, file format, visualization,
interoperability, generic programming

SPM2007 2007, Beijing, China

1. INTRODUCTION
Very early scientific software often consists of a monolithic
single applications, dedicated to solve a fairly special prob-
lem. Applications of this kind perform exceptionally well,
as they are written by domain experts and fine tuned man-
ually. But extending their field beyond the initial set of
problems requires a considerable amount of maintenance by
the developing group. Extending a single application also is
combined with a high investment of time to learn its inter-
nals, which often requires in depth knowledge. Frequently,
programmers thus opt for recreation of their applications
because this alternative is faster and less likely to fail. How-
ever, this approach does not scale as soon as multiple single
applications are required to operate together. Such interop-
erability is inevitable in particular in the fields of

• visualization,

• multi-physics applications and

• workflows within grid environments.

The extensibility of applications hugely depends on the ease
of re-usability of their components. The issue of finding
an application-independent data model, constituted by the
underlying data structure and the operations possible on it,
was recognized and has led to various approaches but no
final solution has yet emerged - a good discussion on this
topic can be found in [12].

Mandatory to the success of a common data model and the
re-usability of its operative components are its

i. applicability (what is the range of the model?),

ii. simplicity (what is the learning time of the model?)
and

iii. performance (what is the execution time of the imple-
mented model?).

While for single applications performance is most impor-
tant, applicability beyond the certain problem is of minor
relevance, and simplicity nearly ignored at all, the situation
is different once interoperability aspects come in. In that
case, simplicity is of importance similar to the the one of
performance, since a developer, usually under pressure to
provide quick results, rarely takes the burden of interfacing
a more complex model beyond his current needs. The fear
of decreased performance as compared to isolated solutions,

frequently termed as “abstraction penalty”, is often used to
argue against generic approaches in general, although the
actual fear seems to be mostly against simplicity. How-
ever, utilizing modern programming paradigms applicability
and performance have become orthogonal aspects while still
maintaining an impressive level of simplicity, which will be
demonstrated below.

1.1 Previous work
The concept of a “data model”, denoting a data structure
with a set of operations on them, was first considered by
F. Codd when defining relational databases [19]. Since then,
data models have been sought as well for scientific simulation
and visualization purposes, e.g.[25, 32, 41, 42, 37]. The vec-
tor bundle data model of D.Butler [18] is an early approach
introducing a generalized model for the specific, but still
wide range of scientific data. It was particularly successful
as it inspired the implementation of OpenDX [53] and the
Sets and Fields approach of the ASCI project [20].M. Rumpf
et.al. [43] explored a functional description of arbitrary meshes
for visualization purposes. The Sophus C++ library [26]
aims at coordinate-free formulations. This approach allows
to exchange different implementations of the same math-
ematical concepts through components that are organized
into four layers: 1. mesh layer (implements grids for se-
quential and parallel HPC machines), 2. scalar field layer
(numerical discretization schemes such as finite differences
and finite elements, including partial derivatives), 3. tensor
layer (coordinate systems, matrices and vectors and gen-
eral differentiation operators) and the 4. application layer
(solvers for PDEs). However, this approach suffers from se-
vere abstraction penalty and requires a code transformation
tool [7].

With the current advancements of compiler technology in
C++, template meta-programming [55] allows to move var-
ious operations from runtime to compile-time. G. Berti [10]
utilized such generic programming techniques to implement
algorithms operating on scientific data independently from
their actual memory layout. Generic programming is also
an essential concept of the Computational Geometry Algo-
rithms Library [1], which allows to exchange the represen-
tation of the kernel objects. Recently, a data model based
on a generalization of fiber bundles was patented as a sheaf
data model [16]. The concept of fiber bundles also led to a
data model called the FiberLib [8], which was implemented
as an extension to the commercial visualization software
Amira [52]. Its design concepts will be reviewed in this pa-
per, as well as the coupling of its successor, FiberLib2, with
the Generic Scientific Simulation Environment (GSSE) [28],
a collection of generic algorithms which was recently devel-
oped independently at the TU Vienna.

1.2 Organization of the Article
This article discusses a novel approach to form a complete
roadmap from an mathematical formula toward a complete,
self-describing file format of output data.

In section 2 we state the problem from a theoretical point
of view and discuss a systematic approach to achieve both
interoperability among applications as well as re-usability of
software components when building applications. It will be
shown that both aspects complement each other. Section

3 proposes the paradigms that are considered to be crucial
for the success of this approach. Section 4 discusses the
tools that we developed to tackle these issues, while sec-
tion 5 demonstrates the discussed methods via a concrete
application example.

2. THEORETICAL BACKGROUND
2.1 Physical Modeling
Our motivation for solid, mathematical, and physical model-
ing is derived from the need in high performance applications
in the field of scientific computing, especially in Technol-
ogy Computer Aided Design (TCAD). Briefly, TCAD deals
with the assembly of large equation systems by utilizing dis-
cretized partial differential equations from different fields of
physics. All types of PDEs (elliptic, parabolic, hyperbolic)
have to be considered for the various types of problems from
the fields of semiconductor simulation [46]. The great diver-
sity of physical phenomena present in semiconductor devices
themselves and in the processes involved in their manufac-
ture make the field of TCAD extremely challenging. Each
of the phenomena can be described by differential equations
of varying complexity.

Boltzmann’s equation for electron transport in semiconduc-
tors is the basis for many calculations for device simulations:

∂

∂t
f + ~v · gradrf + ~F · gradkf =

∂

∂t
f |collisions (1)

Here f is the distribution function and v the velocity of the
charge carriers, while ~F denotes the force of an electric field
on these particles.

Due to the complexity of Boltzmann’s equation, several tech-
niques have been developed which result in various, simpler
models. One of these is the drift diffusion model, which can
be derived from (1) by applying the method of moments
[46]. Therewith PDEs of parabolic as well as elliptic type
are coupled [35]. Due to the highly non-linear behavior of
these equations, special discretization schemes using differ-
ent shape functions are employed [45]. This results in cur-
rent relations as shown in (4). These equations are solved
self-consistently with Poisson’s equation, also given in (4).

While for the Poisson equation a linear interpolation is used,
the Scharfetter-Gummel discretization [45] leads to a non-
linear interpolation scheme, which is described by:

Jn,ij =
q µn Uth

dij

(
njB(Λij)− niB(−Λij)

)
(2)

Λij =
Ψj −Ψi

Uth
B(x) =

x

ex − 1
(3)

The J represents the current flow, whereas q is the charge
density, µn the mobility for electrons, n the carrier density,
Uth the thermal voltage, and Ψ the potential.

The final drift-diffusion equations are summarized by:

div (ε grad (Ψ)) = q (n− p− C) (4)

div (Jn)− q ∂tn = qR

Jn = q n µn grad (Ψ) + q Dn grad (n)

Here, R represents the generation-recombination rate, and
Dn the diffusion coefficient.

Another important part in TCAD is the modeling of waves,
which arise, e.g., in mask exposure simulation or in simu-
lating the skin effect in interconnect lines found in todays
microchips. The Maxwell equations can be separated into
coupled scalar equations for the vector components of the
electric as well as magnetic field strength. As an example,
we show two of these equations, where B, H represents the
magnetic part, and E, D the electric part of the electromag-
netic field:

− ∂Bx

∂t
=

∂Ex

∂y
− ∂Ey

∂z
(5)

∂Dx

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− Jx

Ideally we would like to solve a physical problem by just stat-
ing the problem in abstract mathematical notation and leave
the implementation details to automatisms in the computer.
However, this is not yet possible and we need to consider
discretization schemes for appropriate numerical modeling.

2.2 Numerical Modeling
Different grid types and dimensions of topological elements,
linear and nonlinear solvers with their associated numerical
issues have to be considered during application development
and demand great care to ensure high software quality while
also addressing performance issues. The development of sev-
eral different discretization schemes has been necessary in
order to best model the underlying physics and to accom-
modate the mathematical peculiarities of each of these equa-
tions while transferring them to the discrete world of digital
computing.

A simple example is given by a generic Poisson equation:

Lell fv(Ψ) ≡
∑
v→e

(∆e→vΨ)
A

d
ε = V % , (6)

where Ψ denotes the solution quantity and ∆ denotes the
difference. The geometrical factors A and d denote the cross
section for the flux and the distance between the two edge
points, respectively. The integration is performed using fi-
nite volumes [35] and leads to a multiplication with the vol-
ume V .

For the special case of a TM mode, the following updating
formulation can be derived from the Maxwell equations (5)
by the Yee discretization scheme [60]. We only present Yees
discretization scheme as an example:

En+1
z (i, j) = En

z (i, j) (7)

+
∆r

∆x
[Hn+1/2

y (i +
1

2
, j)−Hn+1/2

y (i− 1

2
, j)

− ∆r

∆y
[Hn+1/2

x (i, j +
1

2
)−Hn+1/2

x (i, j − 1

2
)

We present implementation examples of these types of equa-
tions in the application section.We also demonstrate the de-
velopment of simple applications with generic components.

2.3 Mathematical Model
Data that are of intrinsically geometric structure are de-
scribed well by the mathematical theories of topology and

differential geometry. This is the category of data that sci-
entific visualization deals with, in contrast to more abstract
data structures such as trees or graphs which are used e.g.
in information visualization. These mathematical theories
thus form a canonical framework for this category of data
(as exploited in Butler’s vector bundle model [17]) which we
compactly review here:

Let E, B be topological spaces and f : E → B a continuous
map. Then (E, B, f) is called a fiber bundle if there exists
a space F such that the union of the inverse images of the
projection map f (the fibers) of a neighborhood Ub ⊂ B of
each point b ∈ B are homeomorphic to Ub×F , whereby this
homeomorphism has to be such that the projection pr1 of
Ub×F (that maps each element of this product space to the
element of the first space) yields Ub again:

(E, B, f : E → B) bundle ↔

∃F : ∀b ∈ B : ∃Ub : f−1 (Ub)
hom' Ub × F

and pr1(Ub × F) = Ub

E is called the total space E, B is called the base space and
F is called the fiber space. In words, this definition requires
that a total space E (in our case a scientific data set) can be
written locally as the product of a base space B and a fiber
space F . If this can be done globally, then the fiber bundle
is called trivial. Such cases will cover most scientific data;
the Möbius strip is a famous example of a non-trivial fiber
bundle with B = S1 and F = R1. Its trivial counterpart is
the infinite cylinder S1 × R1.

Organizing data, which represent a total space, by the con-
cept of a fiber bundle means to separate properties of the
base space (which usually will be a manifold, but more gen-
eral topological spaces are possible as well) from the proper-
ties of the fiber space (e.g. the tangential space containing
vector fields). Both properties can be implemented indepen-
dently: for instance, the same mechanisms can be used to
access a vector field given on a tetrahedral mesh, a struc-
tured grid or on a particle set because the fiber space is
identical. On the other hand, the base space is identical
for different scalars, vectors, tensors etc. data given on the
same tetrahedral grid.

The decomposition of the usually discretized base space is
well described in topology theory as a (“closure-finite, weak-
topology”) CW-complex by exploiting incidence and adja-
cency relationships among n-dimensional cells (open subsets
of the base space that are homeomorph to an n-dimensional
ball) , with two n-cells a, b being adjacent, iff a ∩ b 6= ∅.
Then, a CW-complex C is a hierarchical system of spaces
X(−1) ⊆ X(0) ⊆ X(1) ⊆ · · · ⊆ X(n), constructed by pairwise
disjoint open cells such that X(n) is obtained from X(n−1) by
attaching adjacent n-cells to each (n−1)-cell and X(−1) = ∅.
The respective subspaces X(n) are called the n-skeletons of
the base space. Supporting this hierarchical structure of
subspaces, each of them possibly carrying a fiber space as
well, allows a systematic handling of scientific data while
sharing common characteristics.

The fiber space, usually continuous, is well described by con-
cepts of differential geometry such as tensor algebra. In the
simpler case of a vector bundle, operations from linear alge-

DataStructures

Fu
nc

tio
na

l
Pr

og
ra

m
m

ing

Generic

Programming

I/O

C
om

putational

R
equest

Physical

Interpretation

Binary
Representation

Multiplicity

Mathematical
Semantics

Physical
Semantics

I

II

III

IV

Figure 1: Tetrahedron span by the four abstraction
levels of a data model and their interfaces, consti-
tuting a certain application scenario all together.

bra can be utilized and the fiber space is fully described by
its dimensionality, also called the multiplicity as it defines
the number of quantities per point. However, this informa-
tion is insufficient to represent the more advanced entities
of differential geometry, which distinguishes e.g. between
tangential (positional) vectors ∂x and co-vectors dx (nor-
mal vectors). This distinction is apparent through their in-
verse coordinate transformation rule. Moreover, the partial
derivative of a tensor field, i.e. the derivation of a tensor field
by a coordinate function, is no longer a tensor field. Instead,
the partial derivative needs to be replaced by the covariant
derivative to achieve a coordinate-free formulation. This
involves the so-called Christoffel symbols, which have the
same multiplicity as a tensor field of 3rd order, but require a
non-tensorial coordinate transformation rule. Obviously the
number of components (multiplicity) needs to be accompa-
nied by some meta-information to be completely described,
i.e. the transition rule.

2.4 Data Model Design
Data exchange and data access, whether it may be internally
within an application via independent software components,
or externally among applications, requires interfaces which
explicitly communicate all properties of a dataset. The more
explicit a description of a certain dataset is through a cer-
tain interface, the wider is its coverage as it avoids implicit
assumptions that are only known within a small set of ap-
plications or application components.

2.4.1 Abstraction Levels
We identify four abstraction levels required to describe scien-
tific data (similar to the scheme in the Sophus library [26]):

I.) binary representation: What are the atomic types and
their binary representation? Usually we do not want
to care about these low levels issues but low-level I/O
libraries need to deal with their implementation de-
tails. Examples are IEEE float numbers such as float
or double and their byte ordering.

II.) multiplicity and parallelism: How many of the atomic
types do we need to assemble? For instance, how many
atomic types (e.g. floats) do we need to numerically
describe coordinates given on a two-dimensional do-
main? This multiplicity information allows to build
the “carrier” of elementary (possibly parallelized) nu-
merical operations; examples are tuples and arrays of
atomic types, such as float[3], double[3].

III.) mathematical semantics: What is the mathematical
purpose of a certain object? For instance, a tangential
vector, a normal vector or a coordinate location are
all represented numerically by same number of atomic
types; however, their mathematical properties - as de-
fined from their chart transition rules - are different;
examples are objects implementing the semantics of
differential geometry, such as ∂x vs. dx.

IV.) physical semantics: What is the physical meaning of
a certain data set? Given a vector field, we need to
associate a certain physical meaning to it in order to
determine its purpose, e.g. its role in a differential
equation, or which visualization methods are appro-
priate for it. For instance, the information that a data
file contains multiple scalar fields is insufficient if it is
not determinable which scalar field refers to tempera-
ture or pressure.

While the mathematical semantics (level III) specifies which
operations are possible on a certain field, the specification of
which operations are meaningful on it (level IV) are mostly
user-driven and on the application level. Currently no on-
tological scheme for physical quantities exists and a textual
representation which is subject to human interpretation is
used instead. A possible automatized approach where to uti-
lize physical quantities or to refer to the governing equations
that were used to create the respective data sets.

2.4.2 Abstraction Interfaces
In a single application with proprietary I/O, the abstrac-
tion levels are usually intertwined. However, identifying
each level within a complex context eases the development
of reusable software components because each level can be
implemented independently. We can analyze the different
requirements for the interfaces between these levels through
their relationships as depicted in the tetrahedron of Fig. 1:

I.)→ II.) data structure: The grouping of atomic types to
tuples is implemented via assembling into structured data
complexes; this step builds the multiplicity abstraction level.
II.)→ III.) functional programming: Adding mathematical
operations to a data structure, such as interpreting a tuple
of floats as elements of a vector space, constitutes the math-
ematical abstraction layer.
I.)↔ III.) generic programming: Implementing (mathemat-
ical) operations which can operate on an equivalence class
of data structures is the domain of generic programming.

III.)→ IV.) physical interpretation: The specification of the
purpose of a certain mathematical object for a specific usage
scenario completes the data model. It defines which quan-
tities play what role within the governing equations of an
application.
I.)→ IV.) I/O: Selective I/O (in contrast to an all-memory
core dump) is only possible once the physical semantics of
the involved variables are known; not everything in memory
needs to be saved to disk. This knowledge is only avail-
able on the application level and is imperative for inter-
application communication.
II.)→ IV.) computational request: High-performance numer-
ical operations in a computer are implemented via optimized
bulk operations on tuples of atomic types. These numeri-
cal operations are independent from their mathematical se-
mantics, but driven by the governing equations or human
interaction based on their physical meaning.

The expressiveness of a data model can be measured by its
coverage with respect to these abstraction levels. A model of
higher abstraction level can always be imposed on a model
of lower abstraction level. The respective couplings among
each of these abstraction layers have their specific needs for
various programming paradigm.

2.4.3 Case Study
We discuss the abstraction interfaces within the software
components FiberLib2, GSSE, the HDF5 I/O library [39] and
the Cactus Code [23].

I.)→ II.) data structure: An implementation of this abstrac-
tion interface is provided by FiberLib2 for a volatile stor-
age and HDF5 for persistent storage. In contrast, GSSE as
a purely generic software component does not provide any
storage mechanisms at all but utilizes iterators that imple-
ment an data model of abstraction level II.
II.)→ III.) functional programming: This abstraction layer
is implemented in FiberLib2 through meta-data that allow
to identify vectors and co-vectors, and is complemented by
GSSE to extend the set of of data model operations.
I.)↔ III.) generic programming: GSSE implements one such
set of (mathematical) operations independently of a specific
data structure, with FiberLib2 as one possible carrier.
III.)→ IV.) physical interpretation: FiberLib2 allows this ab-
straction layer through textual human-interpretable identi-
fiers for so-called grid and field objects, but does not yet
provide support beyond this (such as an ontology for phys-
ical quantities).
I.)→ IV.) I/O: This interface is implemented via F5 [9],
the HDF5 I/O layer of FiberLib2. It may be utilized as a
standalone C library that directly speaks to an application
without requiring the application to know about the Fiber-
Lib’s data model.
II.) → IV.) computational request: This relationship is rep-
resented by the Cactus Code [23], which provides an ab-
straction layer in its kernel (the “flesh”) for operations on
grid functions and takes care of parallelization issues. The
concrete implementation of data structures and operations
is deferred to plugins (the “thorns”). As such, the Cactus
Code is orthogonal in its functionality to GSSE (implement-
ing generic operations) and FiberLib2 (implementing generic
data structures). Integration of FiberLib2 and GSSE within
Cactus will be subject of future work.

3. PROGRAMMING PARADIGMS
In many areas of scientific computing there is a manifold
of software applications and tools available which provide
methods and libraries for the solution of very specific prob-
lem classes [55, 47, 14, 11]. They are mostly specialized on a
certain type of underlying mathematical model, resulting in
a solution process which is highly predictable. However, it
is important to note that such applications impose restric-
tions on possible solution methods which cannot be foreseen
at the beginning of modern program development. But, as
it can be observed from the last section, the development
of highly reusable software components for this highly com-
plex area demands different programming paradigms for an
efficient realization. A software component is reusalbe if it
can be used beyond its initial use within a single application
or group of applications without modification.

Initially only one- and two-dimensional data structures were
used due to the limitations of computer resources. The
imperative programming paradigm was sufficient for this
type of task. With the improvement of computer hardware
and the rise of object-oriented programming paradigm, the
shift to more complex data models was possible. Finally,
the generic programming paradigm has emerged and has
eased the development of independent algorithms. There-
with more operations on each data structure were possible
and the distance to the mathematical semantic was steadily
reduced.

Another important part in developing components for sci-
entific computing are performance aspects, which should be
handled orthogonally to the development of applications.
Optimizations can thereby be treated separately. Related
to Section 2.4.2, the performance aspects are part of the
generic programming edge. With the multi-language ap-
proach, performance aspects cannot be considered orthogo-
nally because of the use of compiled modules which require
an interface layer in order to build applications.

3.1 OO vs. Generic vs. Imperative
Implications to application development can be observed
clearly by studying the evolution of the object-oriented para-
digm from imperative programming. The object-oriented
programming paradigm [58] has significantly eased the soft-
ware development of complex tasks, due to the decomposi-
tion of problems into modular entities. It allowed the spec-
ification of class hierarchies with its virtual class polymor-
phism (subtyping polymorphism), which was a major en-
hancement for many different types of applications. But
another important goal in the field of scientific comput-
ing, orthogonal libraries, cannot be achieved easily by this
paradigm. A simple example for an orthogonal library is
a software component, which is completely exchangeable,
e.g. a sorting algorithm for different data structures [47].
An inherent property of this paradigm is the divergence of
generality and specialization [57, 3, 5]. Hereby the object-
oriented programming paradigm is pushed to its limit with
the requirements in the field of scientific computing, due to
interface specifications, performance issues, and orthogonal-
ity. Even though the trend of combining algorithms and
data structures is able to provide generalized access to the
data structures through objects, it is observable that the
interfaces of these objects become more complex as more

functionality is added. The intended generality often re-
sults in inefficiency of the programs, due to virtual function
calls which have to be evaluated at run-time. Compiler op-
timizations such as inlining or loop-unrolling cannot be used
efficiently, if at all. A lot of research was carried out to cir-
cumvent these issues [6], but major problems arise in the
details [21].

Modern paradigms, such as the generic programming para-
digm (GP [38, 30]), have the same major goals as object
oriented programming, like re-usability and orthogonality.
However, the problem is tackled from a different point of
view [22]. Together with meta-programming (MP) [2], ge-
neric programming accomplishes both a general solution for
most application scenarios and highly specialized code parts
for minor scenarios without sacrificing performance [31, 4,
24] due to partial specialization. The C++ language sup-
ports this paradigm with another type of polymorphism
which is realized with template programming [50], the para-
metric polymorphism. Combining this type of polymor-
phism with meta-programming, the compiler can generate
highly specialized code without adversely affecting orthog-
onality. This allows the programmer to focus on libraries
which provide concise interfaces with an emphasis on or-
thogonality, as can be found in the STL[34] or the BGL[47].

The generic programming paradigm establishes homogeneous
interfaces between algorithms and data structures without
sub-typing polymorphism by an abstract access mechanism,
the iterator concept. This concept specifies an abstract
mechanism for accessing data structures in a concise way.

Functional programming (FP) [36] eases the specification
of equations and offers extendable expressions while retain-
ing the functional dependence of formulae by higher order
functions. The features of meta-programming offer the em-
bedding of domain-specific terms and mechanisms directly
into the language, as well as compile-time algorithms to ob-
tain optimal run-time. To analyze the shift of paradigms
and the advantages of using different paradigms, we review
the development of applications at the Institute for Micro-
electronics at the TU Vienna. The programming paradigms
used are stated as well, to highlight the development and
achievements enabled by the different paradigms:

Name Year Paradigm Information
MINIMOS 1980 imperative [46]
S*AP 1989 imperative [44]
WSS 2000 OO [13]
VGML 2005 OO, GP [27]
GSSE 2006 OO, GP, FP, MP [28]

The shift from imperative programming to a large variety of
different programming paradigms, such as generic program-
ming, functional programming, and meta-programming, re-
sults in an enormous simplification of code. This develop-
ment can be estimated using the total lines of code which is
necessary to write applications [24].

year lines of code paradigm language
1980 100.000 imperative Fortran
1990 300.000 imperative C, Fortran
2000 600.000 imperativ, OO C, C++
2006 20.000 OO, GP, FP, MP C++

By using generic components, the application design is re-
duced to specify the important parts only. All other source
code is hidden in the components. The drastic reduction
of source lines arises from the fact, that all complex data
structure relevant code is now concentrated in one library, a
generic topology library (GTL, [29]). The mathematical for-
malism is covered by a generic discretization library (GDL,
[51]).

The C and Fortran languages do not offer techniques for a
variable degree of optimization, such as controlled loop un-
rolling [49, 33]. Such tasks are left to the compiler. There-
fore, libraries have to use special techniques such as prac-
ticed by ATLAS [59] or have to rely on manually tuned
code elements which have been assembled by domain ex-
perts or the vendors of the microprocessor architecture used.
Thereby, a strong dependence on the vendor of the micropro-
cessor is incurred. In short, these methods hugely compli-
cate the development process of high performance libraries.

The basic parts of how to achieve high performance in C++
can be summarized as follows:

• Parametric polymorphism: with the compiler’s data-
type-based function selection at compile time, a global
optimization with inlined function blocks and inter-
procedure/inter-library optimization is possible.

• Lightweight object optimization [48]: allocation to reg-
isters is possible with the reduction of structures to
their basic parts.

The unique way parametric polymorphism is realized in C++
[50, 40] makes it possible to write compile-time libraries that
enable an optimization across the boundaries of the libraries,
thereby reaching new performance optima at the expense of
increased compile time, but also reduction of implementa-
tion task due to more abstraction and thus reusability. This
has already been demonstrated in the field of numerical anal-
ysis, yielding figures comparable to Fortran [55, 54, 56], the
previously undisputed candidate for this kind of calculation.

3.2 Property-based vs. Content-type
The question of what paradigms are most appropriate to
implement certain parts is tightly coupled to the kind of
queries that need to be dealt with. Just as programming
languages distinguish different data types, so mathematics
and physics discuss several different entities such as scalar
or vector fields. The properties of these entities are un-
ambiguously described in the fiber bundle model. In the
FiberLib data model these properties are mapped to specific
entries in a five-level hierarchical system, which is reviewed
in section 4.2. The inverse problem is to find out the entity
from a given set of properties. This query may be addressed
by adding a content-type meta-tag that answers exactly this

question. However, while such a content-type solution might
well aid for a debugging purpose, it defeats the purpose of
the fiber bundle model, as it is an alias to the total space in-
stead of allowing separate views to the base and fiber space.
This separation is the strength of the fiber bundle model
and ensures the high re-usablity of operations for similar
data types. In particular, a certain operation will hardly be
required to make use of all properties of the total space at the
same time; instead, it is more appropriate for an operator to
query whether the current data entity of interest will pro-
vide the properties that are required to perform the desired
operation. This way the “what” inquiry is transformed into
a “how” inquiry, which is more appropriate for re-usability
of software components as well as for interoperability among
applications.

4. COUPLING GENERIC ENVIRONMENTS
4.1 GSSE
Generic library design deals with the conceptual categoriza-
tion of computational domains, the reduction of algorithms
to their minimal conceptual requirements, and strict per-
formance guarantees. The benefits of this approach are the
re-usability and the orthogonality of the resulting software.
Generic libraries were pioneered by the Standard Template
Library (STL) in C++, but both software and language
technology have long gone beyond STL. GSSE is based on
two generic libraries, GTL and GDL.

We compiled libraries which contain functionality meeting
four main criteria. First, the library should be complete so
that all applications can be written exclusively using this
library (as well as standard libraries). Indeed, completeness
increases the usability enormously, because no components
have to be added while existing components can be adapted.
Second, the parts of the library should be usable for a broad
range of different applications. Each of the software compo-
nents is not only written for a very specific purpose, but for
a manifold of problems. Third, the interoperability of the
library must not be affected by its completeness. Even if the
complete library can be used by itself, it has to provide stan-
dardized interfaces which guarantee compatibility for data
structures which have not been foreseen in the initial design.

The GTL was developed to interpret data structures as cell
complexes of a certain dimension. Because of the combi-
natorial properties of complexes, a higher-dimensional data
structure can also be considered as the projection onto any
lower-dimensional one, thereby traversed in multiple ways.
Related to the base space property of the fiber model, the
GTL operates on the n-skeletons. Because of the distinc-
tion between local and global properties, data type design-
ers can at the same time control which incidence relations,
thus which kinds of efficient traversal, are available. Local
properties can be depicted by local or explicit neighborhood
information, whereas global properties are modelled by im-
plicit neighborhood information.

The GDL was developed to describe a set of common opera-
tions for solving partial differential equations, namely those
concerned with assembling equations. By examining several
libraries a common framework was developed that encom-
passed finite element, finite volumes, and finite difference
techniques. The library uses C++ techniques to very suc-

cinctly express how to assemble the discretized form of the
partial differential equations.

4.2 FiberLib2
Inspired by the Butler’s vector bundle data model [17] and
OpenDX, “FiberLib2” is a re-implementation of a data model
which was originally conceived [8] for visualizing numerical
data originating from of general relativity (GR). Since the
mathematics of GR requires explicit treatment of otherwise
implicitly assumed properties of space and time, designing a
data model to cover GR improves its genericity. The model
is represented by an acyclic graph of five levels with actual
data sets only at the end nodes of the graph. The loca-
tion of a data set throughout the path in the graph defines
the semantics of the specific data set, allowing to naturally
group data sets [into “index spaces”] which share common
properties. These levels are

1. slice (grouping all data which belong to a certain point
in the parameter space)

2. grid (grouping data which refer to a certain data source)

3. topology (grouping data which describe a - mostly
topological - property of a grid instance)

4. representation (grouping all data which describe a
topological property with respect to “something else”,
e.g. a coordinate system or cell - vertex relationships)

5. field (actual data sets storing numerical information).

This model eases database-like queries such as which data
exist for a certain timestep or which vertices exist per cell of
a certain mesh. Internal reverse representations also allow
inverse queries, such as asking for which time steps or on
which grids a certain field exists, or for the cells per vertex.

From these five levels, only the grid and field levels are ex-
posed to the application. Their identifiers carry semantic
information beyond the pure mathematical description. The
topology level corresponds to the skeleton spaces of a CW-
complex or multiple refinement levels and is used to identify
the topological properties of a grid. The representation level
allows multiple coordinates of the same field to co-exist, such
that a numerical scheme may choose the best one suitable
for a certain problem. Not all data sets need to be stored
explicitly, e.g. functional representations such as the vertex
coordinates of a uniform grid may be built from few param-
eters.

Beyond the pure in-memory representation of the data model,
its data structures map more or less directly to various file
formats. The hierarchical structure inherent to HDF5 pro-
vides a natural representation. We made this HDF5 repre-
sentation of the data model usable an independent C library
in order to equip external application with a compatible I/O
layer. This C library, called “F5”, provides a simple inter-
face for most application scenarios which occur in external
applications.

4.3 Coupling FiberLib2 and GSSE
FiberLib2 and GSSE have both been developed independently,
but share the same mathematical background: topology and
differential geometry. FiberLib2 provides a data model con-
sisting of base space and fiber space that GSSE may operate
on: The GTL part of the GSSE offers all different types of
topological traversal through the base space, whereas with
the GDL of the GSSE, algorithms and equations of the fiber
space can be described easily.

Both environments are complementary. Interoperability pos-
sibilities between applications are provided by FiberLib2 and
added as feature to GSSE, which primarily aims at applica-
tion design. The GTL provides a complete and comprehen-
sive iterator hierarchy, yielding a unique data access mecha-
nism for all different dimensions and topological structures.
The GDL eases the specification of equations as well as com-
plete algorithms. By close coupling of these generic envi-
ronments, it is possible to implement well scaling applica-
tions rapidly. Several advantages can be derived directly
from the functional nature of the GDL. On the one hand,
side-effects which complicate the actual software develop-
ment are reduced to a minimum. On the other hand, the
functional character of the equations can be retained and
equations can therewith be build step by step. The result
is a high-performance multi-paradigm environment with a
comprehensive and complete underlying data model.

5. APPLICATION DEVELOPMENT
5.1 Traversal and Data Access with the GTL
The GTL allows the specification of algorithms indepen-
dently from the actual dimension or topological structure
of the grid. In order to find a concise definition, however,
we have to identify parts of the code which are commonly
used and re-formulate the used code parts in a manner which
fulfills the requirements of

• re-usability and

• formulation close to mathematics.

The following code snippet shows the conventional imple-
mentation using GTL methods only. It is used to specify the
div(u ⊗ u) term of the Navier Stokes equations using finite
volume schemes. We use u on vertices to access the value
of the fluid velocity. On the edges we have A, d as Voronoi
geometry factors of the dual graph as well as the normal flux
u n. The iterators vertex edge as well as edge vertex are
used to retrieve all incident edges of a vertex and all incident
vertices of an edge.

array <3> div_u_u;

vertex_edge eit(v);
for(; eit.valid (); ++eit)
{
array <3> inter = 0;

edge_vertex vit(*eit);
for(; vit.valid (); ++vit)
{

inter += u(*vit);
}

inter *= A(*eit) / d(*eit) * u_n(*eit);
div_u_u += inter;

}

Both, the mechanisms for quantity access as well as the
mechanisms for combined iteration and accumulation can
be implemented as separate code elements. It can also be
seen easily that only the iterator of the innermost loop is
used when accessing quantities.

5.2 Discrete Formulation with the GDL
The GDL implements function objects which encapsulate
the functionality of loops over incident elements combined
with accumulation. A possible implementation of such a
loop can be found in the following code snippet which is
written within the context of the Phoenix 2 library [15].

eval(Env & env , Initial & init , Summand & summand)
{

base_elem(at <0>(env.args));
Iterator iter(base_elem);
result = init.eval(env);

while(iter.valid ())
{

result += summand.eval(newenv(env , *iter));
++iter;

}
}

The iterator iter is constructed via the base element which
is passed to the function object. Then the result is initialized
using another function object called init. This is required
to abstract the initial value from the underlying numerical
data type as well as the accumulation operation (e.g. mul-
tiplication).

After the initialization, all incident elements are traversed
with the iterator iter. The valid() method states if the
dereferentiation of the iterator would yield a valid result.
The summand function object is evaluated on the newly tra-
versed elements *iter. The Phoenix2 library provides con-
venient construction of functional data structures such as
higher order functions, named and unnamed variables, binders
and operators, however, it imposes the use of environments
which slightly reduce the transparency of the code. For the
discrete formulation, the following code can be used.

Using object generators [2], the formulation of mathematical
expressions can be simplified enormously, mostly because
types can be derived automatically. The expression can be
written in the following form.

sum <base_traversed >(Initial)[Summand]

Here, base denotes the type of the base element such as
vertex, while traversed stands for the type of the tra-
versed element (e.g. edge). In this case the expression
(vertex edge) traverses all edges which are incident to one
vertex.

Functional programming allows us to formulate a discretiza-
tion scheme concise while it still provides the dimensional

and topological independence. Therefore we can formulate
the Navier Stokes equations using finite volumes in the fol-
lowing manner:

sum <vertex_edge >()
[

sum <edge_vertex >()[u(_1)]
* A(_1) / d(_1) * u_n(_1)

]

The unnamed function 1 is used to evaluate the quantities
in the innermost loop. At this level, different formulations
in finite element schemes or finite volume schemes lead to
different formulae.

5.3 Implementation of Equations with GSSE
A generic Laplace (6) can be implemented by the following
source code. First, the right hand side is set to zero:

eq = sum <vertex_edge >
[

sum <edge_vertex >(0.0, _e)
[psi * orient(_1 , _e)
] * A / d * eps

]

With small changes the Laplace equation can be extended to
a Poisson equation. With the next code snippet the great
extensibility of the functional programming approach can
be clearly observed. Most of the source code remains un-
changed; only minor parts have to be added.

eq = sum <vertex_edge >
[

sum <edge_vertex >(0.0, _e)
[psi * orient(_1 , _e)
] * A / d * eps

] - V * rho

The data accessor implementation takes care of accessing
data sets with different data locality, e.g., data on vertices,
edges, facets, or cells. In this case, V and rho are located
on different objects.

The source code of the discretized drift-diffusion equations
(4) is shown in the following code snippet:

// Poisson equation
equation_poiss=
sum <vertex_edge >
[

sum <edge_vertex >(0.0, _e)
[psi * orient(_1 , _e)
] * A / d * eps

] - (n-p+nA-nD) * (V*q/(eps0 * epsr)))

// Continuity equation for electrons
equation_n = sum <vertex_edge >
[
sum <edge_vertex >(0.0,_e)
[
orient(_e , _1) * n(_1) *
Bern(locate(_e)
[sum <edge_vertex >[psi]/U_th])*A/d]

)
]

]

The Bernoulli function, given in (3), is mapped to Bern,
while psi is a functional object providing access to a quan-
tity. Due to the functional specification, a special mecha-
nism has to be introduced locate(e) to obtain the edge
information in the innermost part.

While the Yee formulation of equation (7) makes use of stag-
gered grids, the application on structured topologies causes
an enormous simplification. Instead of special grids, we em-
ploy higher dimensional elements such as edges and faces for
the representation of electrical field strength and magnetic
induction. It turns out that the tensorial character of the
quantities fits into the dimensionality concept of the topo-
logical elements. The final source code is presented in the
following code snippet. The minimal requirement to specify
such complex equations can be seen clearly.

E += dt * d / eps * sum <edge_facet >(0.0 , _e)
[
H / A * orient(_e , _1)

]

5.4 Continuous Layer
Even though these formulae can be specified for several dif-
ferent discretization schemes, the formulation still requires
much in-depth knowledge of each single discretization scheme.
The use of different namespaces offers the possibility to use
different discretization schemes as well as different mecha-
nisms of operators. For this reason it is possible to provide
different discretization schemes using the same formulation.
The discretization schemes can be easily exchanged by using
various namespaces.

The major advantage of this method is that the actual math-
ematical problem is specified continuously rather than dis-
cretely. Therefore, the in-depth knowledge of the final li-
brary user can be reduced enormously while still providing
the flexibility of exchanging discretization schemes.

5.5 Final Implementation
The following code shows the final implementation of the in-
troduced concepts for the discretization of the Navier Stokes
equations.

The function objects, or actors, are combined with mecha-
nisms of the GDL to specify the complete equation at com-
pile time. The run-time part consists of the evaluation of the
function objects on the vertices using incidence information
only.

...

scalar_quantity psi("psi");

scalar_quantity rho("rho");

AUTO(equ_poiss, div(grad((psi)) - rho);

...

for (vertex_iterator vit = vertex_begin();

vit.valid(); ++vit)

{

linear_equation<numeric_type> poisson

= equ_poiss(*vit);

// ... assemble the equations ...

}

The expression AUTO1 is only used to a missing feature in the
current C++ language. With the upcoming new C++0x
standard the keyword auto is part of the language and we
can write the following instead:

auto equ_poiss = div(grad((psi)) - rho ;

With GDL and GTL we have a framework which provides
a very high language flexible generic implementation for a
wide variety of different problems within the range of sci-
entific computing, especially the solution of partial differ-
ential equations. Due to the generic implementation, the
performance of software can be improved orthogonally to
the actual formulation of the problem.

5.6 Data Output
The file resulting from the numerical simulation has to en-
compasses the time-dependent output of dynamic eqn. (4)
as Ψ, n, p and eqn. (5) as E, H, A, D. These fields live on
different skeletons of the grid:

• Vertex fields: Ψ, n, p

• Edge fields: A, D

• Face fields: E, H

Using the HDF5 I/O layer of FiberLib2, this output informa-
tion will appear in a file listing (using the HDF5 standard
tool h5ls) as:

/T=1.0/GSSE/Points Group

/T=1.0/GSSE/Points/Cartesian Group

/T=1.0/GSSE/Points/Cartesian/Positions Dataset {98317}
/T=1.0/GSSE/Points/Cartesian/psi Dataset {98317}
/T=1.0/GSSE/Points/Cartesian/n Dataset {98317}
/T=1.0/GSSE/Points/Cartesian/p Dataset {98317}

/T=1.0/GSSE/Edges Group

/T=1.0/GSSE/Edges/Points Group

/T=1.0/GSSE/Edges/Points/Positions Dataset {81317}
/T=1.0/GSSE/Edges/Cartesian/A Dataset {81317}
/T=1.0/GSSE/Edges/Cartesian/D Dataset {81317}

/T=1.0/GSSE/Faces Group

/T=1.0/GSSE/Faces/Points Group

/T=1.0/GSSE/Faces/Points/Positions Dataset {53965}
/T=1.0/GSSE/Faces/Cartesian/E Dataset {53965}
/T=1.0/GSSE/Faces/Cartesian/H Dataset {53965}

/T=1.0/GSSE/Connectivity Group

/T=1.0/GSSE/Connectivity/Points Group

/T=1.0/GSSE/Connectivity/Points/Positions Dataset {70965}

The file structure provides a grouping of the simulation fields
according to their topological relationship within the mesh.
From the mathematical point of view, this file structure is
self-describing, yielding an abstraction level III. What is left
for future work is the replacement of textual descriptions
such as psi, A, D etc. by some ontology-based scheme for

1Using the GNU C++ compiler or the BOOST library,
it can be implemented using the preprocessor expression
#define AUTO(var, value) typeof(value) var = value

describing physical quantities independently of their naming
conventions, which even among physicist lead to confusion.
The planned introduction of metric units into HDF5 will be
useful for this purpose.

6. CONCLUSIONS
We have discussed the coupling of two a-priori independently
developed software components, FiberLib2 and GSSE. We
analyzed their abstraction capabilities and found them to
share the same mathematical semantics. The first compo-
nent, aiming at inter-application aspects, and the second
one, aiming at intra-application design, complement each
other perfectly. Their coupling results in a high performance
framework which allows to specify equations close to their
mathematical notation and to create output data files that
are able to fully communicate the mathematical content in
a self-describing way.

7. ACKNOWLEDGMENTS
The authors want to thank the Institute for Microelectron-
ics. Special thanks go to Yaakoub El Khamra, Mayank
Tyagi and Hartmut Kaiser from the Center for Computation
& Technology at LSU for lively and inspiring discussions.

8. ADDITIONAL AUTHORS
Additional authors: Philipp Schwaha (Institute for Micro-
electronics), email: schwaha@iue.tuwien.ac.at; Michael Spe-
vak (Institute for Microelectronics), email: spevak@iue.

tuwien.ac.at.

9. REFERENCES
[1] A. Fabri. CGAL- The Computational Geometry

Algorithm Library, 2001.
citeseer.ist.psu.edu/fabri01cgal.html.

[2] D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[3] R. Affeldt, H. Masuhara, E. Sumii, and A. Yonezawa.
Supporting Objects in Run-Time Bytecode
Specialization. In Proc. of the Symp. on Part. Eval.
and Semantics-Based Prog. Manip., pages 50–60, New
York, NY, USA, 2002. ACM Press.

[4] A. Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[5] H. M. Andersen and U. P. Schultz. Declarative
Specialization for Object-Oriented-Program
Specialization. In PEPM ’04: Proc. of the 2004 ACM
SIGPLAN Symp. on Part. Eval. and Semantics-Based
Prog. Manip., pages 27–38, New York, NY, USA,
2004. ACM Press.

[6] D. F. Bacon, S. L. Graham, and O. J. Sharp.
Compiler Transformations for High-Performance
Computing. In Proc. of the OOPSLA Conf.,
volume 26, pages 345–420, 1996.

schwaha@iue.tuwien.ac.at
spevak@iue.tuwien.ac.at
spevak@iue.tuwien.ac.at
citeseer.ist.psu.edu/fabri01cgal.html

[7] O. S. Bagge. CodeBoost: A framework for
transforming C++ programs. Master’s thesis,
University of Bergen, P.O.Box 7800, N-5020 Bergen,
Norway, March 2003.

[8] W. Benger. Visualization of General Relativistic
Tensor Fields via a Fiber Bundle Data Model. PhD
thesis, Free University Berlin, 2004.

[9] W. Benger. Fiberbundle hdf5.
http://www.fiberbundle.net/, 2005.

[10] G. Berti. Generic Software Components for Scientific
Computing. PhD thesis, University of Cottbus, 2000.
http://www.math.tu-cottbus.de/~berti/diss/.

[11] G. Berti. GrAL - The Grid Algorithms Library. In
ICCS ’02: Proc. of the Conf. on Comp. Sci., volume
2331, pages 745–754, London, UK, 2002.
Springer-Verlag.

[12] E. Bethel. Interoperability of visualization software
and data models is not an achievable goal. In IEEE
VIS 2003, 2003.

[13] T. Binder, A. Hössinger, and S. Selberherr. Rigorous
Integration of Semiconductor Process and Device
Simulators. IEEE Trans.Comp.-Aided Design of Int.
Circ. and Systems, 22(9):1204–1214, 2003.

[14] C. E. Board. CGAL-3.2 User and Reference Manual,
2006.

[15] Boost. Boost Phoenix2, 2006.
http://spirit.sourceforge.net/.

[16] D. M. Butler. Sheaf data model, July 2005. US Patent
6,917,943.

[17] D. M. Butler and S. Bryson. Vector bundle classes
from powerful tool for scientific visualization.
Computers in Physics, 6:576–584, nov/dec 1992.

[18] D. M. Butler and M. H. Pendley. A visualization
model based on the mathematics of fiber bundles.
Computers in Physics, 3(5):45–51, sep/oct 1989.

[19] E. F. Codd. A relational model of data for large
shared data banks. Communications of the ACM,
13(6):pp. 377—387, 1970.

[20] L. Cook and C. Matarazzo. The tri-lab data models
and format (dmf) project. http://www.ca.sandia.
gov/asci-sdm/cgi-bin/sdmframedisplay.cgi/

asci-sdm/DMFNecdc/DMFNecdcv4.html.

[21] D. Gay and B. Steensgaard. Fast Escape Analysis and
Stack Allocation for Object-Based Programs. In CC
’00: Proc. of the 9th Conf. on Compiler Constr.,
pages 82–93, London, UK, 2000. Springer-Verlag.

[22] T. Geraud and A. Duret-Lutz. Generic Programming
Redesign Pattern. In Proc. of the 5th Conf. on
Pattern Lang. of Progr. (EuroPLoP ’2000), Irsee,
Germany, 2000.

[23] T. Goodale, G. Allen, G. Lanfermann, J. Masso,
T. Radke, E. Seidel, and J. Shalf. The cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing - VECPAR ’2002, 5th
International Conference. Springer, 2003.

[24] D. Gregor, J. Järvi, M. Kulkarni, A. Lumsdaine,
D. Musser, and S. Schupp. Generic Programming and
High-Performance Libraries. Int. J. of Parallel Prog.,
33(2), June 2005.

[25] R. B. Haber, B. Lucas, and N. Collins. A data model
for scientific visualization with provisions for regular
and irregular grids. In VIS ’91: Proceedings of the 2nd
conference on Visualization ’91, pages 298–305, Los
Alamitos, CA, USA, 1991. IEEE Computer Society
Press.

[26] M. Haveraaen, H. A. Friis, and T. A. Johansen.
Formal software engineering for computational
modeling. Nordic Journal of Computing, 3(6):241–270,
1999.

[27] R. Heinzl and T. Grasser. Generalized Comprehensive
Approach for Robust Three-Dimensional Mesh
Generation for TCAD. In Proc. Conf. in Sim. of
Semiconductor Processes and Devices, pages 211–214,
Tokio, September 2005.

[28] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. A
High Performance Generic Scientific Simulation
Environment. In Proc. of the PARA Conf., page 61,
Umea, Sweden, June 2006.

[29] R. Heinzl, M. Spevak, P. Schwaha, and S. Selberherr.
A Generic Topology Library. In Library Centric
Sofware Design, OOPSLA, Portland, OR, USA,
October 2006.

[30] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, and
J. G. Siek. Algorithm Specialization in Generic
Programming - Challenges of Constrained Generics in
C++. In PLDI ’06: Proceedings of the ACM
SIGPLAN 2006 conference on Programming language
design and implementation, New York, NY, USA,
June 2006. ACM Press.

[31] J. Järvi, J. Willcock, and A. Lumsdaine.
Concept-Controlled Polymorphism. In GPCE ’03:
Proc. of the 2nd Conf. on Generative Prog. and
Comp. Eng., pages 228–244, New York, NY, USA,
2003. Springer-Verlag New York, Inc.

[32] P. Kochevar. Database management for data
visualization. In Workshop on Database Issues for
Data Visualization, pages 109–117, 1993.

[33] L. Lee and A. Lumsdaine. Generic Programming for
High Performance Scientific Applications. In JGI ’02:
Proc. of the 2002 joint ACM-ISCOPE Conf. on Java
Grande, pages 112–121, New York, NY, USA, 2002.
ACM Press.

[34] M. H. Austern. Generic Programming and the STL:
Using and Extending the C++ Standard Template
Library. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

http://www.fiberbundle.net/
http://www.math.tu-cottbus.de/~berti/diss/
http://www.ca.sandia.gov/asci-sdm/cgi-bin/sdmframedisplay.cgi/asci-sdm/DMFNecdc/DMFNecdcv4.html
http://www.ca.sandia.gov/asci-sdm/cgi-bin/sdmframedisplay.cgi/asci-sdm/DMFNecdc/DMFNecdcv4.html
http://www.ca.sandia.gov/asci-sdm/cgi-bin/sdmframedisplay.cgi/asci-sdm/DMFNecdc/DMFNecdcv4.html

[35] P. A. Markowich, C. Ringhofer, and C. Schmeiser.
Semiconductor Equations. Springer, Wien-New York,
1990.

[36] B. McNamara and Y. Smaragdakis. Functional
Programming in C++ using the FC++ Library.
SIGPLAN, 36(4):25–30, Apr. 2001.

[37] P. Moran. Field model: An object-oriented data
model for fields. Technical report, NASA Ames
Research Center, 2001.

[38] D. R. Musser and A. A. Stepanov. Generic
Programming. In Proc. of the ISSAC’88 on Symb. and
Alg. Comp., pages 13–25, London, UK, 1988.
Springer-Verlag.

[39] NCSA. Hierarchical data format version 5.
http://hdf5.ncsa.uiuc.edu/hdf5/, 2003. National
Center for Supercomputing Applications, Illinois.

[40] C. E. Oancea and S. M. Watt. Parametric
Polymorphism for Software Component Architectures.
In Proc. of the OOPSLA Conf., pages 147–166, New
York, NY, USA, 2005. ACM Press.

[41] P. Rhodes, R. Bergeron, and T. Sparr. A data model
for multiresolution scientific data environments. In
NSF/DoE Lake Tahoe Workshop on Hierarchical
Approximation and Geometrical Methods for Scientific
Visualization, Tahoe City, California, October 15–17,
2000.

[42] P. J. Rhodes, R. D. Bergeron, and T. M. Sparr. A
data model for adaptive multiresolution scientific
data. Data Visualization: The State of the Art, pages
257–272, 2003.

[43] M. Rumpf, A. Schmidt, and K. G. Siebert. Functions
defining arbitrary meshes - a flexible interface between
numerical data and visualization. Computer Graphics
Forum, 15(2):129–142, 1996.

[44] R. Sabelka and S. Selberherr. A Finite Element
Simulator for Three-Dimensional Analysis of
Interconnect Structures. Microelectronics Journal,
32(2):163–171, 2001.

[45] D. Scharfetter and H. Gummel. Large-Signal Analysis
of a Silicon Read Diode Oscillator. IEEE Trans.
Electron Dev., 16(1):64–77, 1969.

[46] S. Selberherr. Analysis and Simulation of
Semiconductor Devices. Springer, Wien–New York,
1984.

[47] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley, 2002.

[48] J. Siek and A. Lumsdaine. Mayfly: A Pattern for
Lightweight Generic Interfaces. In Pattern Languages
of Programs, July 1999.

[49] J. Siek and A. Lumsdaine. The Matrix Template
Library: Generic Components for High-performance
Scientific Computing. Computing in Science and
Engineering, 1(6):70–78, Nov/Dec 1999.

[50] J. G. Siek and A. Lumsdaine. Concept Checking:
Binding Parametric Polymorphism in C++. In
Proceedings of the First Workshop on C++ Template
Programming, Erfurt, Germany, 2000.

[51] M. Spevak, R. Heinzl, P. Schwaha, T. Grasser, and
S. Selberherr. A Generic Discretization Library. In
Library Centric Sofware Design, OOPSLA, Portland,
OR, USA, October 2006.

[52] D. Stalling, M. Westerhoff, and H.-C. Hege. Amira -
an object oriented system for visual data analysis. In
C. R. Johnson and C. D. Hansen, editors,
Visualization Handbook. Academic Press, 2005.

[53] L. A. Treinish. Data explorer data model.
http://www.research.ibm.com/people/l/lloydt/

dm/dx/dx_dm.htm, Mar. 1997.

[54] T. L. Veldhuizen. Expression Templates. C++ Report,
7(5):26–31, June 1995. Reprinted in C++ Gems, ed.
Stanley Lippman.

[55] T. L. Veldhuizen. Using C++ Template
Metaprograms. C++ Report, 7(4):36–43, May 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

[56] T. L. Veldhuizen and D. Gannon. Active Libraries:
Rethinking the Roles of Compilers and Libraries. In
Proc. of the SIAM Workshop on Obj.-Oriented
Methods for Inter-Operable Sci. and Eng. Comp.
(OO’98). SIAM-Verlag, 1998.

[57] E. N. Volanschi, C. Counsel, G. Muller, and C. Cowan.
Declarative Specialization of Object-Oriented
Programs. In Proc. of the OOPSLA Conf., pages
286–300, New York, NY, USA, 1997. ACM Press.

[58] P. Wegner. Concepts and Paradigms of
Object-Oriented Programming. SIGPLAN OOPS
Mess., 1(1):7–87, 1990.

[59] R. C. Whaley and J. Dongarra. Automatically Tuned
Linear Algebra Software. In 9th SIAM Conf. on
Parallel Proc. for Sci. Comp., 1999. CD-ROM
Proceedings.

[60] K. S. Yee. Numerical Solution of Initial Boundary
Value Problems involving Maxwell’s Equations in
Isotropic Media. IEEE Trans. Antennas and
Propagation, 14(1):302–307, 1966.

http://hdf5.ncsa.uiuc.edu/hdf5/
http://www.research.ibm.com/people/l/lloydt/dm/dx/dx_dm.htm
http://www.research.ibm.com/people/l/lloydt/dm/dx/dx_dm.htm

	Introduction
	Previous work
	Organization of the Article

	Theoretical Background
	Physical Modeling
	Numerical Modeling
	Mathematical Model
	Data Model Design
	Abstraction Levels
	Abstraction Interfaces
	Case Study

	Programming Paradigms
	OO vs. Generic vs. Imperative
	Property-based vs. Content-type

	Coupling Generic Environments
	GSSE
	FiberLib2
	Coupling FiberLib2 and GSSE

	Application Development
	Traversal and Data Access with the GTL
	Discrete Formulation with the GDL
	Implementation of Equations with GSSE
	Continuous Layer
	Final Implementation
	Data Output

	Conclusions
	Acknowledgments
	Additional Authors
	References

